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Preface 

 

Physics is the branch of science that describes matter, energy, space and time at the most 

fundamental level. Whether you are planning to study engineering, biology, medicine, music, 

chemistry or art, some principles of physics are relevant to your field. Physicists look for patterns 

in the physical phenomena that occur in the universe. They try to explain what is happening and 

they perform experiments to see if the proposed explanation is valid. The goal is to find the most 

basic laws that govern the universe and to formulate those laws in the most precise way possible. 

In this book, we will present a brief description of some of the physical materials scheduled 

for students of preparatory engineering to facilitate the process of retrieval and follow-up, as will 

be mentioned in ten chapters that included the properties of matter, waves and heat, which 

coincides with what the students studying in the global engineering colleges. 

We also thank Dr. Saeed Abdullah for his efforts and active participation in the scientific 

content of this book in this manner. 

At the conclusion of this humble work, we hope that all students will benefit and that this 

book will serve as a guide for them in this semester. 

 

With our best wishes 

Authors, 
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CHAPTER (1) 

 UNITS AND DIMENSIONS  

1.1 Introduction 

Science and engineering are based on measurements and comparisons. Thus, we need rules about 

how things are measured and compared, and we need experiments to establish the units for those 

measurements and comparisons. One purpose of physics (and engineering) is to design and conduct those 

experiments. For example, physicists strive to develop clocks of extreme accuracy so that any time or time 

interval can be precisely determined and compared. You may wonder whether such accuracy is actually 

needed or worth the effort. Here is one example of the worth: Without clocks of extreme accuracy, the 

Global Positioning System (GPS) that is now vital to worldwide navigation would be useless. 

1.2 Units 

There are three systems of units, International System (SI or MKS), Gaussian System (CGS) and 

British System. Table 1-1 illustrates the four units of basic quantities. A metric system of units has been 

used for many years in scientific work and in European countries. In 1960, the general conference of 

Weights and Measures, an international authority on units, proposed a revised metric system called the 

systéme International d̉' Unités in French (abbreviated SI). Table 1-2 illustrates the units of basic physical 

quantities. 

Table 1-1: Different Systems of Units 

Quantity 
Systems of Units 

SI or MKS System Gaussian or GCS System British System 

Length Meter (𝑚) Cm Foot (𝑓𝑡) 
Mass Kg Gm slug 

Time Sec Sec Sec 

Temperature Kelvin (°𝐾) °𝐾 Fahrenheit (℉) 

Length 

We can identify length as the distance between two points in space. In 1120, the king of England 

decreed that the standard of length in his country would be named the yard and would be precisely equal 

to the distance from the tip of his nose to the end of his outstretched arm. Similarly, the original standard 

for the foot adopted by the French was the length of the royal foot of King Louis XIV. Neither of these 

standards is constant in time; when a new king took the throne, length measurements changed! The French 

standard prevailed until 1799, when the legal standard of length in France became the meter (𝑚), defined 
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as one ten-millionth of the distance from the equator to the North Pole along one particular longitudinal 

line that passes through Paris. Notice that this value is an Earth-based standard that does not satisfy the 

requirement that it can be used throughout the Universe. As recently as 1960, the length of the meter was 

defined as the distance between two lines on a specific platinum–iridium bar stored under controlled 

conditions in France. Current requirements of science and technology, however, necessitate more accuracy 

than that with which the separation between the lines on the bar can be determined. In the 1960𝑠 and 

1970𝑠, the meter was defined as 1 650 763.73 wavelengths1 of orange-red light emitted from a krypton-

86 𝑙𝑎𝑚𝑝. In October 1983, however, the meter was redefined as the distance traveled by light in vacuum 

during a time of 1/299 792 458 second. In effect, this latest definition establishes that the speed of light 

in vacuum is precisely 299 792 458 meters per second. This definition of the meter is valid throughout 

the Universe based on our assumption that light is the same everywhere. 

Table 1-2: Basic Physical Quantities and Their Units 

Quantity Unit Name Symbol 

Length Meter m 

Mass Kilogram kg 

Time Second s 

Electric current Ampere A 

Temperature Kelvin K 

Amount of substance Mole mol 

Luminous intensity Candela Cd 

 

Mass 

The SI fundamental unit of mass, the kilogram (kg), is defined as the mass of a specific platinum–

iridium alloy cylinder kept at the International Bureau of Weights and Measures at Sèvres, France. This 

mass standard was established in 1887 and has not been changed since that time because platinum–iridium 

is an unusually stable alloy. A duplicate of the Sèvres cylinder is kept at the National Institute of Standards 

and Technology (NIST) in Gaithersburg, Maryland. 
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Time 

Before 1967, the standard of time was defined in terms of the mean solar day. (A solar day is the 

time interval between successive appearances of the Sun at the highest point it reaches in the sky each 

day.) The fundamental unit of a second (s) was defined as (1/60) (1/60) (1/24) of a mean solar day. 

This definition is based on the rotation of one planet, the Earth. Therefore, this motion does not provide a 

time standard that is universal. 

In 1967, the second was redefined to take advantage of the high precision attainable in a device 

known as an atomic clock, which measures vibrations of cesium atoms. One second is now defined as 

9 192 631 770 times the period of vibration of radiation from the cesium-133 𝑎𝑡𝑜𝑚. 

The SI system is based on powers of ten. Some of the most frequently used prefixes for various 

powers of ten and their abbreviation are listed in table 1-3. 

 

Table 1-3: SI Prefixes and Symbols 

Factor Decimal Representation Prefix Symbol 

1018 1,000,000,000,000,000,000 exa E 

1015 1,000,000,000,000,000 peta P 

1012 1,000,000,000,000 tera T 

109 1,000,000,000 giga G 

106 1,000,000 mega M 

103 1,000 kilo k 

102 100 hecto h 

101 10 deka da 

100 1   

10-1 0.1 deci d 

10-2 0.01 centi c 

10-3 0.001 milli m 

10-6 0.000 001 micro  

10-9 0.000 000 001 nano n 

10-12 0.000 000 000 001 pico p 

10-15 0.000 000 000 000 001 femto f 

10-18 0.000 000 000 000 000 001 atto a 
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1.3 Dimensional Analysis 

In physics, the word dimension denotes the physical nature of a quantity. The distance between 

two points, for example, can be measured in feet, meters, or furlongs, which are all different ways of 

expressing the dimension of length. The quantities that are independent of other quantities are called 

fundamental quantities. The units that are used to measure these fundamental quantities are called 

fundamental units. And the quantities that are derived using the fundamental quantities are called derived 

quantities. The units that are used to measure these derived quantities are called derived units. The symbols 

we use in this book to specify the dimensions as illustrated in table 1-4. 

Table 1-4: Basic Physical Quantities and Their Dimensions 

Basic quantity Dimension 

Length L 

Mass M 

Time T 

Uses of Dimensional Analysis 

• To establish the relationship between some related physical quantities. 

• To find the dimensions of dimensional constants. 

• To check the correctness of a physical relation/formula. 

Limitations of dimensional analysis 

1. Dimensionless quantities cannot be determined by this method. Constant of proportionality cannot be 

determined by this method. They can be found either by experiment (or) by theory. 

2. This method is not applicable to trigonometric, logarithmic and exponential functions. 

3. In the case of physical quantities which are dependent upon more than three physical quantities, this 

method will be difficult. 

From these basic physical quantities, we can derive the dimensions of some Common Physical 

Quantities as illustrated in table 1-5.  
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Table 1-5: Most Common Physical Quantities and Their Dimensions 

Physical quantity Law Dimension Units 

Area مساحه Length * Width L2 m2 

Volume   حجم Length * Width* Height L3 m3 

Density   كثافة Mass/Volume ML-3 kg/ m3 

Linear density  كثافة طولية  Mass/ Length ML-1 kg/ m 

Velocity   سرعة Distance / Time LT-1 m/s 

Acceleration  عجلة Velocity/ Time LT-2 m/s2 

Force = Weight = Tension 

 الشــــــد    = الـــوزن = القــوة 

Mass * Acceleration 
MLT-2 kg. m/ s2 

Torque   عزم الازدواج Force * Distance ML2T-2 kg. m2/ s2 

Pressure   الضغط Force / Area ML-1T-2 kg/ m s2 

Work or Energy   الشغل أو الطاقة Force * Distance ML2T-2 kg. m2/ s2 

Power  القدرة Energy / Time ML2T-3 kg. m2/ s3 

Intensity   الشدة Power / Area MT-3 kg/ s3 

Velocity gradient   تدرج السرعة Velocity / Distance T-1 s-1 

Volumetric rate   معدل التدفق الحجمي 
Volume / Time 

L3T-1 m3/s 

Momentum  كمية الحركة Mass * Velocity MLT-1 kg. m/ s 

Coefficient of viscosity 

 معامل اللزوجة

𝜂 =  
𝐹𝑜𝑟𝑐𝑒 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐴𝑟𝑒𝑎 ∗ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 

ML-1T-1 Kg/m s 

Example (1.1): 

A body is falling from rest under gravity. Find the relation between the distance traveled by the body and 

between the gravitational acceleration and time elapsed. 

Solution: 

𝑑 𝛼  𝑎𝑥  𝑡𝑦 
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𝑑 = 𝑘 𝑎𝑥 𝑡𝑦 

[𝑑] = [𝑘] [𝑎]𝑥[𝑡]𝑦 

𝐿 =  (𝐿𝑇−2)𝑥 (𝑇)𝑦 

𝐿1𝑇0 = 𝐿𝑥  𝑇𝑦−2𝑥 

𝑥 = 1   𝑎𝑛𝑑 𝑦 = 2 

𝒅 = 𝒌 𝒂 𝒕𝟐 

Example (1.2): 

If the viscous force between any two layers in a viscous fluid is given by 𝑭 = 𝜼 𝑨
𝒅𝝊

𝒅𝒉
, where η is the 

coefficient of viscosity and dυ/dh is the velocity gradient. Find the dimension of η. 

Solution: 

𝐹 = 𝜂 𝐴
𝑑𝜐

𝑑ℎ
 

𝜂 =
𝐹

𝐴

𝑑ℎ

𝑑𝜐
 

[𝜂] =
[𝐹]

[𝐴]

[𝑑ℎ]

[𝑑𝜐]
 

[𝜂] =
(𝑀𝐿𝑇−2)(𝐿)

(𝐿2)(𝐿𝑇−1)
= 𝑀𝐿−1𝑇−1 

Example (1.3): 

Show that 𝒙 − 𝒙𝒐 = 𝒗𝒐𝒕 +
𝟏

𝟐
𝒂𝒕𝟐 is dimensionally correct, where x and xo are the final and initial distances, 

vo is the velocity, a is the acceleration and t is the time. 

Solution: 

[𝐿. 𝐻. 𝑆] = [𝑥 − 𝑥𝑜] = 𝐿 

[𝑅. 𝐻. 𝑆] = [𝑣𝑜𝑡 +
1

2
𝑎𝑡2] = [𝑣𝑜][𝑡] + [

1

2
] [𝑎][𝑡2] = (𝐿𝑇−1 𝑇) + (𝐿𝑇−2 )(𝑇2 ) = 𝐿 

[𝐿. 𝐻. 𝑆] = [𝑅. 𝐻. 𝑆] 

𝑥 − 𝑥𝑜 = 𝑣𝑜𝑡 +
1

2
𝑎𝑡2 is dimensionally correct. 
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PROBLEMS 

1. Newton’s law of universal gravitation is represented by: [𝑭 = 𝑮
𝑴𝒎

𝒓𝟐 ]. where, (𝑭) is the magnitude of 

the gravitational force exerted by one small object on another, (𝑴) and (𝒎) are the masses of the 

objects, and (𝒓) is a distance. Find the dimension of the gravitational constant (𝑮). 

2. Use dimensional analysis to determine how the linear speed of particle (𝒗) traveling in a circle depends 

on some or all of the following properties; the radius of the circle (𝒓), the angular frequency (𝝎) with 

which the particle orbits about the circle and the mass of particle (𝒎). There is no dimensionless 

constant involved in the relation. 

3. The relationship between kinetic energy (𝑲) and momentum (𝑷) is [𝑲 =  𝑷𝟐/𝟐𝒎], where (𝒎) stands 

for mass. What is the SI unit of momentum? 

4. Shows which of the following equations are dimensionally correct; 

(a) 𝑭𝒃 = 𝝆𝑽𝒈 ,where (𝑭𝒃) is the buoyant force that is acting by a fluid of density (𝝆) on an object of 

submerged volume (𝑽) and (𝒈) is gravitational acceleration. 

(b) 𝑷 = 𝑷𝒂 + 𝝆𝒈𝒉 ,where (𝑷) is the pressure at a point placed at a depth (𝒉) from the surface of a fluid 

of density (𝝆), (𝑷𝒂) is the atmospheric pressure and (𝒈) is gravitational acceleration. 

5. Verify the truth of the relation [
𝒅𝑽

𝒅𝒕
=

𝑷𝒂𝟒

𝜼𝑳
], where 

𝒅𝑽

𝒅𝒕
 is the volumetric rate of flow of a liquid of viscosity 

coefficient (𝜼) flowing through a tube of radius (𝒂) and length (𝑳) due to pressure difference (𝑷).  

6. Find the relation between the velocities of transverse waves produced from the vibration of thin 

homogeneous string and between the tension in the string and mass per unit length of it. 

7. Obtain an expression for the viscous force acting on a sphere of radius (𝒓) moving in a viscous fluid 

with velocity (𝒗), if the coefficient of viscosity is (𝜼). 

 



Chapter (2)                          Elasticity 

8 

 

CHAPTER (2) 

ELASTICITY 

2.1 Introduction 

In the study of mechanics thus far, we have assumed that objects remain un-deformed when 

external forces act on them. In reality, all objects are deformable. That is, it is possible to change the shape 

or the size of an object (or both) by applying external forces. As these changes take place, however, internal 

forces in the object resist the deformation. In this case the object return to its original shape or size after 

the external force is removed and the object is called elastic. Therefore, elasticity is defined as the power 

of substance to regain its original shape after deformation.  

We shall discuss the deformation of solids in terms of the concepts of stress and strain. Stress is a 

quantity that is proportional to the force causing a deformation; more specifically, stress is the external 

force acting on an object per unit cross-sectional area. The result of a stress is strain, which is a measure 

of the degree of deformation. It is found that, for sufficiently small stresses, stress is proportional to strain; 

the constant of proportionality depends on the material being deformed and on the nature of the 

deformation. We call this proportionality constant the elastic modulus. The elastic modulus is therefore 

defined as the ratio of the stress to the resulting strain: 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 =
𝑠𝑡𝑟𝑒𝑠𝑠

𝑠𝑡𝑟𝑎𝑖𝑛
                                                          (2 − 1) 

The elastic modulus in general relates what is done to a solid object (a force is applied) to how that 

object responds (it deforms to some extent). It is similar to the spring constant k in Hooke’s law that relates 

a force applied to a spring and the resultant deformation of the spring, measured by its extension or 

compression. 

Three elastic moduli are used to describe the elastic behavior (deformations) of objects as they 

respond to forces that act on them. 

2.2 Tensile stress or compressive stress  

For simple tension or compression, as shown in figure 2.1 (a, b) respectively, the stress on a long 

rod is defined as: 

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 =
𝐹

𝐴
          "𝑁 /𝑚2"                                                       
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where (𝐹) is the magnitude of the force applied perpendicularly to an 

area (𝐴) on the rod. The strain, or unit deformation, is then the 

dimensionless quantity and defined as: 

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑎𝑖𝑛 =
∆𝐿

𝐿
          "𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠"  

where, ∆𝐿 is the change in a length of the specimen. 

If the stress does not exceed the yield strength, the modulus 

for tensile and compressive stresses is called the Young’s modulus 

and is represented in engineering practice by the symbol 𝑌, which 

defined as the force (tension or compression) normal to unit area 

over the change of length per the original length. Then, equation (2-1) becomes  

𝑌 =
𝐹

𝐴⁄

∆𝐿
𝐿⁄

          "𝑁/𝑚2"                                                         (2 − 2) 

The strain (∆𝐿
𝐿⁄ ) in a specimen can often be measured conveniently with a strain gage, which can 

be attached directly to operating machinery with an adhesive. Its electrical properties are dependent on the 

strain it undergoes.  

Although the Young’s modulus for an object may be almost the same for tension and compression, 

the object’s ultimate strength may well be different for the two types of stress. Concrete, for example, is 

very strong in compression but is so weak in tension that it is almost never used in that manner.               

Table 2-1 shows the Young’s modulus and other elastic properties for some materials of engineering 

interest. 

Example (2.1): 

Steel wire has a length of 𝟓 𝒎 and cross – sectional area 𝟎. 𝟏𝟐 𝒄𝒎𝟐. A compressive force acted on the 

wire reduces its length by 𝟑% from its original length find: the stress, the force and the contraction,     

(𝒀 =  𝟐 ×  𝟏𝟎𝟏𝟏 𝑵/𝒎𝟐). 

Solution: 

𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑌 𝑠𝑡𝑟𝑎𝑖𝑛 = (2 × 1011 𝑁 𝑚2⁄ )(0.03) = 6 × 109 𝑁 𝑚2⁄  

𝐹 = 𝑠𝑡𝑟𝑒𝑠𝑠 × 𝐴 = (6 × 109  𝑁 𝑚2⁄ )(0.12 × 10−4 𝑚2) = 7.2 × 104 𝑁 

∆𝐿 = 𝐿 × 𝑠𝑡𝑟𝑎𝑖𝑛 = (500 × 10−2 𝑚)(0.03) = 0.15 𝑚 

 

Figure 2.1: Tensile and compressive 

stress and strain   

 

(a) 

 
(b) 
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Example (2.2): 

In an experiment to measure Young's modules, a load of 𝟓𝟎𝟎 𝒌𝒈 hanging from a steel wire of length 𝟑 𝒎 

and cross section 𝟎. 𝟐 𝒄𝒎𝟐, was found to stretch the wire 𝟎. 𝟒 𝒄𝒎 above its no-load length. What were the 

stress, the strain, and the value of Young's modulus for the steel of which the wire was composed?  

Solution:  

𝑆𝑡𝑟𝑒𝑠𝑠 =
𝐹

𝐴
=

(500 𝑘𝑔)(9.81 𝑚/𝑠2)

(0.2 × 10−4 𝑚2)
= 2.45 × 108  𝑁 𝑚2⁄  

𝑆𝑡𝑟𝑎𝑖𝑛 =
∆𝐿

𝐿
=

(0.4 × 10−2 𝑚)

(3 𝑚)
= 0.00133 

𝑌 =
𝑆𝑡𝑟𝑒𝑠𝑠

𝑆𝑡𝑟𝑎𝑖𝑛
=

(2.45 × 108  𝑁 𝑚2⁄ )

(0.00133)
= 1.84 × 1011  𝑁 𝑚2⁄  

2.3 Surface or Shear Deformation (Elasticity shape) 

Another type of deformation occurs 

when an object is subjected to a force tangential 

to one of its faces while the opposite face is held 

fixed by another force (figure 2.2). The stress in 

this case is called a shear stress. If the object is 

originally a rectangular block, a shear stress 

results in a shape whose cross-section is a 

parallelogram. Book pushed sideways, as shown 

in figure 2.2b, is an example of an object subjected to a shear stress. To a first approximation (for small 

distortions), no change in volume occurs with this deformation.                                             

Shear stress is defined as the ratio of the tangential force (𝐹) to the area A of the face being 

sheared 

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠 =
𝐹

𝐴
          "𝑁 /𝑚2" 

Shear strain, or unit deformation, is then is defined as: 

  

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑎𝑖𝑛 =
∆𝑥

ℎ
= 𝑡𝑎𝑛 𝜑 ≃ 𝜑    "𝑓𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝜃" 

 

where ∆𝑥 is the horizontal distance that the sheared face moves and ℎ is the height of the object. 

Figure 2.2: Shear Elasticity  

 

(a) (b) 
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The elastic modulus in this case is called Shear modulus or rigidity modulus (𝑆) and can be written as:  

𝑆 =
𝐹 /𝐴

𝑡𝑎𝑛 𝜑
=  

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑎𝑖𝑛
          "𝑁 /𝑚2"                                   (2 − 3) 

Example (2.3):  

Suppose the object in the figure is a brass plate 𝟏 𝒎 square and 𝟎. 𝟓 𝒄𝒎 thick. If the 

displacement CF is 𝟎. 𝟎𝟐 𝒄𝒎, how large a force 𝐹 must be exerted on each of its edges? 

(The shear modulus of brass is 𝟎. 𝟑𝟔 × 𝟏𝟎𝟏𝟏𝑷𝒂.)  

Solution: 

The shear stress of each edge is:  

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠 =
𝐹

𝐴
=

𝐹

(1 𝑚)(0.005 𝑚)
= (200 𝑚−2)𝐹 

  

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑎𝑖𝑛 =
∆𝑥

ℎ
=

(2 × 10−4 𝑚)

(1 𝑚)
= 2 × 10−4  

 

𝑆 =
𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑎𝑖𝑛
 

(0.36 × 1011 𝑁/𝑚2) =
(200 𝑚−2)𝐹

(2 × 10−4 𝑚)
 

𝐹 = 3.6 × 104 𝑁 

2.4 Volume Elasticity (volume change)  

In this type of elasticity, we characterize the response 

of a substance to uniform squeezing or to a reduction in 

pressure when the object is placed in a partial vacuum. 

Suppose that the external forces acting on an object are at right 

angles to all its faces, as shown in figure 2.3, and that they are 

distributed uniformly over all the faces.  Such a uniform 

distribution of forces occurs when an object is immersed in a 

fluid. An object subject to this type of deformation undergoes 

a change in volume but no change in shape.  

Volume stress is defined as the ratio of the magnitude of the change of the normal force ∆𝐹 to the 

area 𝐴 of the object.  

Figure 2.3: Volume elasticity 
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𝑉𝑜𝑙𝑢𝑚𝑒 𝑆𝑡𝑟𝑒𝑠𝑠 =
∆𝐹

𝐴
= ∆𝑃          "𝑁 /𝑚2" 

The object will experience a volume change. The volume strain is equal to the change in volume ∆𝑉 

divided by the initial volume 𝑉𝑖  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑆𝑡𝑟𝑎𝑖𝑛 =
∆𝑉

𝑉𝑖
          "𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠" 

Thus, from equation (2-1), we can characterize a volume (“bulk”) compression in terms of the Bulk 

modulus (𝐵), which is defined as the ratio of the volume stress to volume strain. 

𝐵𝑢𝑙𝑘 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 (𝐵) =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑆𝑡𝑟𝑒𝑠𝑠

𝑉𝑜𝑙𝑢𝑚𝑒 𝑆𝑡𝑟𝑎𝑖𝑛
= −

∆𝐹 𝐴⁄

∆𝑉 𝑉𝑖⁄
= −

∆𝑃

∆𝑉 𝑉𝑖⁄
          "𝑁 /𝑚2"       (2 − 4) 

Example (2.4): 

A solid has a volume of 𝟐. 𝟓 𝒍𝒊𝒕𝒆𝒓𝒔 when the external pressure is 𝟏 𝒂𝒕𝒎. (a) What is the change in the 

volume when the body is subjected to pressure of 𝟏𝟔 𝒂𝒕𝒎 . (𝟏 𝒂𝒕𝒎 = 𝟏. 𝟎𝟏𝟑 × 𝟏𝟎𝟓 𝑵/𝒎𝟐, 𝑩 =

 𝟐 × 𝟏𝟎𝟏𝟏 𝑵/𝒎𝟐)?  

Solution: 

∆𝑉 = −
∆𝑃 𝑉

𝐵
=

(15 × 1.013 × 105 𝑁 𝑚2⁄ )(2.5 × 10−3 𝑚3)

( 2 × 1011 𝑁 𝑚2⁄ )
= −1.9 × 10−8 𝑚3 

Table 2-1: Typical Values for Elastic Modulus 

Substance 
Young’s modulus 

(N/m2) 

Shear modulus 

(N/m2) 

Bulk modulus 

 (N/m2) 

Tungsten 35 × 1010  14 × 1010  20 × 1010  

Steel 20 × 1010  8.4 × 1010  6 × 1010  

Copper 11 × 1010  4.2 × 1010  14 × 1010  

Brass 9.1 × 1010  3.5 × 1010  6.1 × 1010  

Aluminum 7 × 1010  2.5 × 1010  7 × 1010  

Glass 6.5 − 7.8 × 1010  2.6 − 3.2 × 1010  5 − 5.5 × 1010  

Quartz 
5.6 × 1010  2.6 × 1010  2.7 × 1010  

Water - - 
0.21 × 1010  

Mercury - - 
2.8 × 1010  
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2.5 Poisson's ratio 

When a sample of material is stretched in one direction it tends to get thinner 

in the lateral direction - and if a sample is compressed in one direction it tends to get 

thicker in the lateral direction. 

The ratio of the relative contraction strain (transverse, lateral or radial strain) 

normal to the applied load - to the relative extension strain (or axial strain) in the 

direction of the applied load 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜, 𝜎 =
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 (𝑇𝑒𝑛𝑠𝑖𝑙𝑒)𝑠𝑡𝑟𝑎𝑖𝑛
=

∆𝑟 𝑟⁄

∆𝐿 𝐿⁄
   "𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠"           (2 − 5) 

where,
∆𝑟

𝑟
=

∆𝑑

𝑑
=

𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟)

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟)
 

Example (2.5): 

A nylon rope used by maintainers elongates 𝟏. 𝟓 𝒎 under the weight of an 𝟖𝟎 𝒌𝒈 Climber. a) If the rope 

is 𝟓𝟎 𝒎 in length and 𝟗 𝒎𝒎 in diameter find the elastic modulus (𝒀)? b) If Poisson's ratio for nylon is 

𝟎. 𝟐, find the change in diameter under this stress?  

Solution: 

𝑌 =
𝐹𝐿

𝐴∆𝐿
=

𝐹𝐿

𝜋𝑟2∆𝐿
=

(80 × 9.81 𝑁)(50 𝑚)

𝜋(4.5 × 10−3 𝑚)2(1.5 𝑚)
= 4.11 × 108  𝑁 𝑚2⁄  

𝑷𝒐𝒊𝒔𝒔𝒐𝒏′𝒔𝒓𝒂𝒕𝒊𝒐, 𝜎 =
∆𝑑 𝑑⁄

∆𝐿 𝐿⁄
⟹ ∆𝑑 =

𝜎𝑑 ∆𝐿

𝐿
=

(0.2)(9 × 10−3 𝑚)(1.5 𝑚)

(50 𝑚)
= 5.4 × 105 𝑚 

2.6 Energy Stored in elastic body (work done)  

Suppose that a wire has original length (𝐿𝑖) and is stretched by a length (𝛥𝐿) when a force (𝐹) is 

applied at one end. If the elastic limit is not exceeded (the extension is directly proportional to the applied 

force 

W = ∫ 𝐾𝑥 𝑑𝑥

𝑥=∆𝐿

𝑥=0

= 𝐾 ∫ 𝑥 𝑑𝑥

𝑥=∆𝐿

𝑥=0

= 𝐾 [
𝑥2

2
]

0

∆𝐿

=
1

2
𝐾∆𝐿2 =

1

2
(𝐾∆𝐿)(∆𝐿) =

1

2
𝐹∆𝐿 

This work is stored in the wire as elastic potential energy (𝑈) 

elastic potential energy, 𝑈 =
1

2
𝐹∆𝐿 

Multiply right hand side by  
𝐴𝐿

𝐴𝐿
 ,we get 
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𝑈 =
1

2
[
𝐹

𝐴

∆𝐿

𝐿
 𝐴𝐿] 

𝑆𝑡𝑟𝑒𝑠𝑠 =
𝐹

𝐴
, 𝑆𝑡𝑟𝑎𝑖𝑛 =

∆𝐿

𝐿
 

𝑈 =
1

2
[𝑆𝑡𝑟𝑒𝑠𝑠 × 𝑆𝑡𝑟𝑎𝑖𝑛 × 𝐴𝐿] 

𝑈 =
1

2
[𝑆𝑡𝑟𝑒𝑠𝑠 × 𝑆𝑡𝑟𝑎𝑖𝑛 × 𝑉𝑜𝑙𝑢𝑚𝑒]          " 𝐽𝑜𝑢𝑙𝑒"                                 (2 − 6) 

And also elastic potential energy density (𝑢) is defined as the elastic potential energy per unit volume, 

and can be written as  

𝑢 =
𝑈

𝑉𝑜𝑙𝑢𝑚𝑒
=

1

2
[𝑆𝑡𝑟𝑒𝑠𝑠 × 𝑆𝑡𝑟𝑎𝑖𝑛]          " 𝐽𝑜𝑢𝑙𝑒/𝑚3"                             (2 − 7) 

2.7 Hook's law  

The stress is directly proportional to the strain within the elastic limit.  

𝐹 𝛼 𝛥𝐿   

or 

 𝐹 =  𝑘 𝛥𝐿                                                                        (2 − 8) 

where, (𝐾) is the force or elastic constant. 

The stress – strain is shown in figure 2.4. Initially, 

a stress-versus-strain curve is a straight line and the 

substance returns to its initial length, shape and volume 

when the force is removed. It is possible to exceed the 

elastic limit of a substance by applying a sufficiently large 

stress as seen in figure 2.3. The elastic limit of a substance 

is defined as the maximum stress that can be applied to 

the substance before it becomes permanently deformed 

and does not return to its initial length.  As the stress 

increases, however, the curve is no longer a straight line. 

When the stress exceeds the elastic limit, the object is 

permanently distorted and does not return to its original shape after the stress is removed. As the stress is 

increased even further, the material ultimately breaks. Breaking stress: (Ultimate strength): is the 

maximum stress at which the material breaks. Or: The stress required to cause actual fracture of a 

material. Elastic fatigue:  As a result of exerting stress on the material several times and for long time, the 

material loss part of its elasticity and does not regain its original shape.  

Figure 2.4: The stress – strain curve 
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PROBLEMS 

1. If Young's modulus for steel 𝒀 =  𝟏. 𝟗 × 𝟏𝟎𝟏𝟐 𝑫/𝒄𝒎𝟐, how much force will be required to stretch 

a sample of wire 𝟏 𝒎𝒎𝟐 in cross – section by 𝟏𝟎% of its original length? 

2. A copper wire has a length of 𝟏𝟓𝟎 𝒄𝒎 and radius of 𝒓 =  𝟏. 𝟐𝟓 𝒎𝒎 fixed at its upper end and a weight 

of 𝟖 𝒌𝒈 is attached to its lower end.  Find the stress and strain. (𝒀 =  𝟏. 𝟐 ×  𝟏𝟎𝟏𝟐 𝑫/𝒄𝒎𝟐). 

3. A steel wire has a length of 𝟓 𝒎 and diameter of 𝟎. 𝟕𝟐 𝒎𝒎 fixed at its upper end, and a mass of 𝟔 𝒌𝒈 is 

attached to its lower end, the density of the mass is 7.5 g/cm3 this mass is immersed in liquid has a 

density of 𝟏. 𝟐 𝒈/𝒄𝒎𝟑. Find the extension (∆𝑳). (𝒀 =  𝟐 ×  𝟏𝟎𝟏𝟐 𝑫/𝒄𝒎𝟐 𝑎𝑛𝑑 𝒈 =  𝟗𝟖𝟎 𝒄𝒎/𝒔𝟐). 

4. Two wires are made of the same material, but wire (𝑨) is twice as long and has twice the diameter of 

wire (𝑩). Find the elongation of wire (𝑩) relative to that of wire (𝑨) when both are subjected to the 

same load? 

5. Calculate the elastic energy stored per unit volume of steel wire of cross-sectional area 𝟒 𝒎𝒎𝟐 when it 

is stretched by a force of  𝟗𝟖 𝑵 within the elastic limit. 

6. A cube of aluminum 𝟒 𝒄𝒎 length is subjected to a shearing force of 𝟏𝟎𝟎 𝒌𝒈. The top face of the cube 

is displaced 𝟎. 𝟎𝟏𝟐 𝒄𝒎 with respect to the bottom; calculate the shearing stress, the shearing strain, and 

the shearing modulus? 

7. A solid copper sphere of 𝟎. 𝟓 𝒎𝟑 volume is placed 𝟏𝟎𝟎 𝒇𝒕 below the ocean surface where the pressure 

is 𝟑 ×  𝟏𝟎𝟓 𝑵/𝒎𝟐. What is the change in volume of the sphere? The bulk modulus for copper is      

𝟏𝟒 ×  𝟏𝟎𝟏𝟎 𝑵/𝒎𝟐. 

8. A solid has a volume of 𝟐. 𝟓 𝒍𝒊𝒕𝒆𝒓𝒔 when the external pressure is 𝟏 𝒂𝒕𝒎. The bulk modulus of the 

material is 𝟐 × 𝟏𝟎𝟏𝟐 𝑫/𝒄𝒎𝟐. What is the change in volume when the body is subjected to a pressure of 

𝟏𝟔 𝒂𝒕𝒎? What additional energy per unit volume is now stored in the material? 

9. Determine the fractional change in volume as the pressure of the atmosphere 𝟏𝟎𝟓 𝑷𝒂 around a metal 

block is reduced to zero by placing the block in vacuum. (Bulk modulus for the metal is 𝟏𝟐𝟓 𝑮𝑷𝒂). 
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CHAPTER (3) 

FLUID STATICS 

3.1 Introduction 

In everyday life, we recognize three states of matter: Solid, Liquid and Gas. Although they different 

in many respects, liquids and gases have a common characteristic in which they differ from solids: they 

are fluids, lacking the ability of solids to offer a permanent resistance to a deforming force. The term “fluid 

statics” is applied to the study of fluids at rest. 

3.2 Density 

The density (𝜌) (Greek letter rho) of any substance is defined as its mass per unit volume. The SI 

unit of density is one kilogram per cubic meter (𝑘𝑔/𝑚3) while the cgs unit is one gram per cubic 

centimeter (𝑔/𝑐𝑚3). The density value can be calculated using equation (3-1). Table 3-1 displays typical 

values of density at room temperature. 

𝜌 =
𝑚

𝑉
                                                                                    (3 − 1) 

The conversion of the density unit from cgs system to SI system can be done as illustrated below. 

1 𝑔/𝑐𝑚3 =  1000 𝑘𝑔/𝑚3 

 

Table 3-1: Densities of some selected materials 

Material Density (𝒈/𝒄𝒎𝟑) Material Density (𝒈/𝒄𝒎𝟑) 

Air 0.00129 Helium gas 0.179 

Aluminum 2.7 Lead 11.3 

Brass 8.6 Silver 10.5 

Copper 8.9 Steel 7.8 

Gold 19.3 Mercury 13.6 

Ice 0.92 Water 1.0 

Iron 7.8 Sea water 1.03 
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Example (3.1): 

Calculate the mass of a solid iron sphere that has a diameter of 𝟑 𝒄𝒎 if the density of iron is 𝟕. 𝟖 𝒈/𝒄𝒎𝟑. 

Solution: 

𝑀 = 𝜌𝑉 = 𝜌 (
4

3
𝜋𝑟3) = (7800𝑘𝑔/𝑚3) (

4

3
𝜋 (

3 × 10−2

2
𝑚)

3

) = 0.011 𝑘𝑔 

3.3 Pressure in a fluid 

A static fluid exerts a force on any surface with which it comes in contact. The direction of the 

force is perpendicular to the surface as illustrated in figure 3.1. The average pressure of fluid at points on 

a planar surface is given by equation (3-2).  

𝑃𝑎𝑣 =
𝐹

𝐴 
                                                                                    (3 − 2) 

The SI unit for pressure is the newton per square meter (𝑁/𝑚2), 

which is named Pascal (𝑃𝑎). Another commonly used unit of pressure is 

atmosphere (𝑎𝑡𝑚). One atmosphere is the average air pressure at sea level. 

The conversion between atmosphere and pascal is: 

𝟏 𝒂𝒕𝒎 = 𝟏. 𝟎𝟏𝟑 × 𝟏𝟎𝟓 𝑷𝒂 

 

Example (3.2): 

A 𝟓𝟎 − 𝒌𝒈 woman balances on one heel of a pair of high heeled shoes. If 

the heel is circular and has a radius of 𝟎. 𝟓 𝒄𝒎, what pressure does she 

exert on the floor? 

Solution: 

𝑃 =
𝐹

𝐴
=

𝑚𝑔

𝜋𝑟2
=

(50 𝑘𝑔)(9.81𝑚/𝑠2)

𝜋(0.5 × 10−2 𝑚)2
= 6.24 × 106 𝑁/𝑚2 

3.3.1 Atmospheric pressure 

On the surface of the earth, we live at the bottom of an ocean of fluid called air. The force exerted 

by air on our bodies and on the surfaces of other objects may be surprisingly large. The atmospheric 

pressure is greater at sea level than at mountain altitudes while the pressure in lake or in the ocean increases 

with increasing depth below the surface. 

 

Figure 3.1: Forces due to a 

static fluid acting on the walls of 

the container and on a 

submerged object. 
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3.3.2 Variation of Pressure with Depth 

Consider an element in the form of a slab; shown in figure 3.2a whose 

thickness (𝑑𝑦) and its faces have an area (𝐴). If (𝜌) is the density of the fluid, 

the mass of the element is (𝜌𝐴𝑑𝑦) and its weight dw is (𝜌𝑔𝐴𝑑𝑦). The force 

exerted on the element by the surrounding fluid is everywhere normal to its 

surface. The resultant horizontal force on its vertical sides is zero. The upward 

force on its lower face is (𝑃𝐴), and the downward force on its upper face is 

(𝑃 + 𝑑𝑃)𝐴. since it is in equilibrium,  

∑ 𝐹𝑦 = 0 

                                      (𝑃 + 𝑑𝑃) 𝐴 +  𝑑𝑤 = 𝑃 𝐴 

(𝑃 + 𝑑𝑃) 𝐴 +  𝜌𝑔𝐴𝑑𝑦 = 𝑃 𝐴 

𝑃 𝐴 + 𝑑𝑃 𝐴 +  𝜌𝑔𝐴𝑑𝑦 = 𝑃 𝐴 

𝑑𝑃 𝐴 = −𝜌𝑔𝐴𝑑𝑦 

𝑑𝑃 = −𝜌𝑔𝑑𝑦         

  
𝑑𝑃

𝑑𝑦
= −𝜌𝑔 

This means that an increase of elevation is accompanied by a decrease in 

pressure.  

We can calculate the pressure at a point in a fluid as the following:  

If (𝑃1) and (𝑃2) are the pressures at elevations (𝑦1) and (𝑦2) as shown in 

figure 3.2b, then:  

𝑑𝑃 = −𝜌𝑔𝑑𝑦 

∫ 𝑑𝑃 = −𝜌𝑔 ∫ 𝑑𝑦
𝑦2

𝑦1

𝑃2

𝑃1

          

𝑃2 − 𝑃1  = −𝜌𝑔(𝑦2 − 𝑦1) 

Let (𝑃) represent the pressure at point (1) and (𝑃𝑎) represent the pressure at point (2), then  

𝑃 = 𝑃𝑎 + 𝜌𝑔ℎ                                                                       (3 − 3) 

Example (3.3):  

(a) Calculate the absolute pressure at an ocean depth of 𝟏𝟎𝟎𝟎 𝒎. Assume the density of seawater is 

𝟏𝟎𝟐𝟒 𝒌𝒈/𝒎𝟑 and that the air above exerts a pressure of 𝟏𝟎𝟏. 𝟑 𝒌𝑷𝒂. (b) At this depth, what force must 

the frame around a circular submarine porthole having a diameter of 𝟑𝟎 𝒄𝒎 exert to counterbalance the 

force exerted by the water? 

 

(a) 

Figure 3.2: Forces on a slab 

in equilibrium state  

(b) 
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Solution: 

(𝒂) 𝑝 = 𝑝𝑎 + 𝜌𝑔ℎ = (101.3 × 103  𝑁/𝑚2) + (1024 𝑘𝑔/𝑚3)(9.81 𝑚/𝑠2)(1000 𝑚)

= 1.01 × 107𝑁/𝑚2 

𝑃𝑔𝑎𝑢𝑔𝑒 = 𝑝 − 𝑝𝑎 = (1.01 × 107𝑁/𝑚2) − (1 × 105 𝑁/𝑚2) = 1 × 107𝑁/𝑚2 

(𝒃) 𝐹 = 𝑃𝑔𝑎𝑢𝑔𝑒𝐴 = 𝑃𝑔𝑎𝑢𝑔𝑒(𝜋𝑟2) = (1 × 107𝑁/𝑚2)(𝜋 (15 × 10−2 𝑚)2) = 7.1 × 105 𝑁 

 

     Pascal’s law: a change in the pressure applied to an enclosed fluid is transmitted undiminished to 

every point of the fluid and to the walls of the container. 

Because the pressure in a fluid depends on depth and on the value of (𝑃), any increase in pressure 

at the surface must be transmitted to every other point in the fluid. An important application of Pascal’s 

law is the hydraulic press illustrated in figure 3.3. The pressure is transmitted through an incompressible 

liquid to a larger piston of surface area (𝐴2). Because the pressure 

must be the same on both sides, (𝑃 =  𝐹1/𝐴1  =  𝐹2/𝐴2). 

Therefore, the force (𝐹2) is greater than the force (𝐹1) by a factor 

of (𝐴2/𝐴1). By designing a hydraulic press with appropriate areas 

𝐴1 and 𝐴2, a large output force can be applied by means of a small 

input force. Hydraulic brakes, car lifts, hydraulic jacks, and 

forklifts all make use of this principle. 

Example (3.4): 

In a car lift used in a service station, compressed air exerts a force on a small piston that has a circular 

cross section and a radius of 𝟓 𝒄𝒎. This pressure is transmitted by a liquid to a piston that has a radius of 

𝟏𝟓 𝒄𝒎. What force must the compressed air exert to lift a car weighing 𝟏𝟑𝟑𝟎𝟎 𝑵? What air pressure 

produces this force? 

Solution: 

𝐹1

𝐴1
=  

𝐹2

𝐴2
 

𝐹1 = (
𝐴1

𝐴2
) 𝐹2 = (

𝜋(5 × 10−2 𝑚)2

𝜋(15 × 10−2 𝑚)2
) (13300 𝑁) = 1477.8 𝑁 

𝑃 =
𝐹1

𝐴1
=

(1477.8 𝑁)

𝜋 (5 × 10−2 𝑚)2
= 0.0019 𝑁/𝑚2 

 

 

Figure 3.3: Diagram of hydraulic 

press 
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3.3.3 Pressure Measurements 

A barometer is a device for measuring atmospheric pressure. A simple 

barometer consists of a tube more than 30 𝑖𝑛𝑐ℎ (76 𝑐𝑚) long inserted in an open 

container of mercury with a closed and evacuated end at the top and open tube end 

at the bottom as shown in figure 3.4. The closed end of the tube is nearly a vacuum, 

so the pressure at the top of the mercury column can be taken as zero. The pressure 

at point A, due to the column of mercury, must equal the pressure at point B, due 

to the atmosphere. If that were not the case, there would be a net force that would 

move mercury from one point to the other until equilibrium is established. 

Therefore,   

𝑃𝐴 = 𝑃𝐵 

𝜌𝐻𝑔𝑔ℎ = 𝑃𝑎 

𝑃𝑎 = 13600 × 9.8 × 0.76 = 1.013 × 105 𝑁/𝑚2 

where (𝜌𝐻𝑔) is the density of the mercury and (ℎ) is the height of the mercury column. One atmosphere 

of pressure is defined to be the pressure equivalent of a column of mercury that is exactly (76 𝑐𝑚) in 

height at (0 ℃). 

  A device for measuring the pressure of a gas contained in 

a vessel is the open tube manometer illustrated in figure 3.5. A 

manometer consists of a U-tube. One end of a U-shaped tube 

contains one or more fluids such as mercury, water, alcohol, or oil 

and the other end is connected to a container of gas at pressure (𝑃). 

Heavy fluids such as mercury are used if large pressure differences 

are anticipated. In an equilibrium situation, the pressures at points 

(𝐴) and (𝐵) must be the same. Therefore, the pressure (𝑃) can be calculated using equation (3-3). The 

pressure (𝑃) is called the absolute pressure, and the difference (𝑃 −  𝑃𝑎) is called the gauge pressure. 

𝑃𝐴 = 𝑃𝐵 

𝑃 = 𝑃𝑎 + 𝜌𝑔ℎ 

Example (3.5): 

Blaise Pascal duplicated Torricelli’s barometer using a red Bordeaux wine, of density 𝟗𝟖𝟒 𝒌𝒈/𝒎𝟑, as the 

working liquid. What was the height ℎ of the wine column for normal atmospheric pressure? Would you 

expect the vacuum above the column to be as good as for mercury? 

Figure 3.5: The open tube manometer. 

 

Figure 3.4:   Barometer 
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Solution: 

𝑃 = 𝜌𝑔ℎ ⟹ ℎ =  
𝑃

𝜌𝑔
=

(1.013 × 105 𝑁/𝑚2)

(984 𝑘𝑔/𝑚3) × (9.81 𝑚/𝑠2)
= 10.5 𝑚 

No. Some alcohol and water will evaporate. The equilibrium vapor pressures of alcohol and water are 

higher than the vapor pressure of mercury. 

 

3.4 Archimedes’ Principle 
 

Buoyancy is a familiar phenomenon; a body immersed in water seems to 

have less weight than when immersed in air. When an object is immersed in a 

fluid, the pressure on the lower surface of the object is higher than the pressure 

on the upper surface. The difference in the pressures leads to an upward net force 

acting on the object due to the fluid pressure. If you try to push a beach ball 

underwater as illustrated in figure 3.6, you feel the effects of the buoyant force 

pushing the ball back up. 

Archimedes' principle: A fluid exerts an upward buoyant force on a 

submerged object equal in magnitude to the weight of the volume of the 

fluid displaced by the object. It acts upward through the centroid of the 

displaced volume.  (F𝐵 = W) 

There are three possible cases as illustrated in figure 3.7; 

1. 𝜌𝑏𝑜𝑑𝑦   <  𝜌 𝑓𝑙𝑢𝑖𝑑: Floating body 

2. 𝜌𝑏𝑜𝑑𝑦    =  𝜌𝑓𝑙𝑢𝑖𝑑 ∶ Neutrally buoyant 

3. 𝜌𝑏𝑜𝑑𝑦   >  𝜌 𝑓𝑙𝑢𝑖𝑑: Sinking Body 

Consider a rectangular solid immersed in a fluid of uniform 

density (𝜌) as illustrated in figure 3.8. Let the top and the bottom surfaces 

have area (𝐴). The force on the lower face of the block is (𝐹2 = 𝑃2𝐴)  

and the force on the upper face is (𝐹1 = 𝑃1𝐴). The total force on the block 

due to the fluid called the buoyant force (𝐹𝐵). 

𝐹𝐵 = (𝑃2 − 𝑃1)𝐴  

Since, (𝑃2 − 𝑃1 = 𝜌𝑔𝑑), the magnitude of the buoyant force can be 

written as:  

𝐹𝐵 = 𝜌𝑔𝑑𝐴 = 𝜌𝑔𝑉  

where, (𝑉 = 𝐴𝑑) is the volume of the block. 

Figure 3.6: A swimmer 

pushes a beach ball 

under water. 

Figure 3.8: Forces due to fluid 

pressure on the top and bottom of 

an immersed rectangular solid. 

 

Figure 3.7: Cases of a body 

when immersed in a fluid. 
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Example (3.6): 

A Ping-Pong ball has a diameter of 𝟑. 𝟖𝟎 𝒄𝒎 and average density of 𝟎. 𝟎𝟖𝟒 𝒈/𝒄𝒎𝟑. What force is

required to hold it completely submerged under water? 

Solution: 

∑ 𝐹 = 0 

𝐹𝑎𝑝𝑝 +  𝑚𝑔 = 𝐹𝐵 

𝐹𝑎𝑝𝑝 =  𝐹𝐵 − 𝑚𝑔 = 𝜌𝑤  𝑉 𝑔 − 𝜌𝑏𝑎𝑙𝑙  𝑉 𝑔 = 𝑉𝑔(𝜌𝑤 − 𝜌𝑏𝑎𝑙𝑙)

= (
4

3
𝜋 𝑟3) (𝑔)(𝜌𝑤 − 𝜌𝑏𝑎𝑙𝑙) = (4/3 𝜋 (1.9 × 10−2 𝑚)3)(9.81 𝑚/𝑠2)(1000 𝑘𝑔/𝑚3 − 84 𝑘𝑔/𝑚3) = 0.258 𝑁

3.5 Forces Against a Dam 

Suppose water stands at a depth (𝐻) behind the vertical 

upstream face of a dam as illustrated in figure 3.9. Water exerts a 

certain resultant horizontal force on the dam, tending to slide it 

along its foundation, and exerts a certain torque, to overturn in 

front of the dam about the point (𝑂). we wish to find the total 

horizontal force. The width of the dam is (𝐿). 

The pressure at a certain elevation is 

𝑝 = 𝜌 𝑔 (𝐻 − 𝑦) 

Atmospheric pressure can be omitted, since it also acts upstream against the other face of the dam. The 

force (𝑑𝐹) against the shaded strip is                F= PA= P Ldy 

𝑭 = ∫ 𝑑𝐹 =  ∫ 𝜌𝑔𝐿 (𝐻 − 𝑦)𝑑𝑦
𝐻

0

= 𝜌𝑔𝐿 ∫  (𝐻 − 𝑦)𝑑𝑦
𝐻

0

 

𝐹 = 𝜌𝑔𝐿[∫ 𝐻𝑑𝑦 −  ∫ 𝑦𝑑𝑦]
𝐻

0

𝐻

0

= 𝜌𝑔𝐿[𝐻 ∫ 𝑑𝑦 − ∫ 𝑦𝑑𝑦]
𝐻

0

𝐻

0

 

Figure 3.9: Water is filled behind a 

dam.



Chapter (3)                  Fluid Statics 

23 

 

𝐹 =  𝜌𝑔𝐿 [𝐻(𝑦)0
𝐻 − (

𝑦2

2
 )

0

𝐻

] =  𝜌𝑔𝐿 [𝐻(𝐻 − 0) − (
𝐻2

2
−

0

2
)] = 𝜌𝑔𝐿 [𝐻(𝐻) −

𝐻2

2
] = 𝜌𝑔𝐿 [𝐻2 −

𝐻2

2
]

=  𝜌𝑔𝐿
𝐻2

2
 

and the total force is  

𝑭 = ∫ 𝑑𝐹 =  ∫ 𝜌𝑔𝐿 (𝐻 − 𝑦)𝑑𝑦
𝐻

0

= 𝜌𝑔𝐿 [
(𝑦 − 𝐻)2

2
]

0

𝐻

= 𝜌𝑔𝐿 (
(𝐻 − 𝐻)2

2
−

(0 − 𝐻)2

2
)

= 𝜌𝑔𝐿 (0 +
𝐻2

2
) =

1

2
𝜌𝑔𝐿𝐻2 

The moment (𝑑Г) of the force (𝑑𝐹) about an axis through (𝑂) is 

عزم الازدواج  Torque = moment =Γ= F.y   القوة * ذراعها 

𝑑Г = 𝑑𝐹. 𝑦 =  𝜌𝑔𝐿𝑦 (𝐻 − 𝑦)𝑑𝑦 

The total torque about (𝑂) is  

Г = ∫ 𝑑Г =  ∫ 𝜌𝑔𝐿𝑦 (𝐻 − 𝑦)
𝐻

0

𝑑𝑦 = ∫ 𝜌𝑔𝐿𝑦𝐻 𝑑𝑦 −  ∫ 𝜌𝑔𝐿𝑦2
𝐻

0

𝐻

0

𝑑𝑦

= 𝜌𝑔𝐿𝐻 ∫ 𝑦 𝑑𝑦 −  𝜌𝑔𝐿 ∫ 𝑦2
𝐻

0

𝐻

0

𝑑𝑦 = 𝜌𝑔𝐿𝐻 [
𝑦2

2
]

0

𝐻

− 𝜌𝑔𝐿 [
𝑦3

3
]

0

𝐻

= 𝜌𝑔𝐿𝐻 (
𝐻2

2
−

0

2
) − 𝜌𝑔𝐿 (

𝐻3

3
−

0

3
) = 𝜌𝑔𝐿

𝐻3

2
− 𝜌𝑔𝐿

𝐻3

3
=  

𝟏

𝟔
 𝒑𝒈𝑳𝑯𝟑 

Г = 𝐹 Ĥ 

1

6
𝜌𝑔𝐿 𝐻3 =

1

2
𝜌𝑔𝐿𝐻2 × Ĥ  

Ĥ =
𝟏

𝟑
 𝑯 

where, (Ĥ) is the height above (𝑂) at which the total force (𝐹) would have to act to produce this torque 
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PROBLEMS 

1. A woman's systolic blood pressure when resting is 𝟏𝟔𝟎 𝒎𝒎𝑯𝒈. What is this pressure in (a) Pa,             

(b) atm and (c) torr? 

2. (a) Find the total weight of water on top of nuclear submarine at a depth of 𝟐𝟎𝟎 𝒎. assuming that its 

(horizontal cross-section) hull area is 𝟑𝟎𝟎𝟎 𝒎𝟐. (b) What water pressure would a diver experience at 

this depth? Assume the density of the sea water is 𝟏. 𝟎𝟑 𝒈/𝒄𝒎𝟑. 

3. The small piston of a hydraulic lift has a cross-sectional area of 𝟑 𝒄𝒎𝟐, and its large piston has a cross-

sectional area of 𝟐𝟎𝟎 𝒄𝒎𝟐. What force must be applied to the small piston for the lift to raise a load of 

𝟏𝟓 𝒌𝑵? 

4. Mercury is poured into a U-tube. The left arm of the tube has 

cross-sectional area A1 of 𝟏𝟎 𝒄𝒎𝟐and the right arm has a 

cross-sectional area A2 of 𝟓 𝒄𝒎𝟐 One hundred grams of water 

are then poured into the right arm as in the following figure.                        

(a) Determine the length of the water column in the right arm 

of the U-tube. (b) Given that the density of mercury is 

𝟏𝟑. 𝟔 𝒈/𝒄𝒎𝟑, what distance 𝒉 does the mercury rise in the left arm? 

 

5. A piece of aluminum with mass 𝟏 𝒌𝒈 and density 𝟐𝟕𝟎𝟎 𝒌𝒈/𝒎𝟑 is suspended from a string and then 

completely immersed in a container of water. Calculate the tension in the string (a) before and (b) after 

the metal is immersed. 

6. About one third of the body of a physicist swimming in the Dead Sea will be above the water line. 

Assuming that the human body density is 𝟎. 𝟗𝟖 𝒈/𝒎𝟑. Find the density of the water in the Dead Sea. 

 

7. A block of wood floats in water with two thirds of its volume submerged. In oil the block floats with 

𝟎. 𝟗 of its volume submerged. Find the density of (a) the wood and (b) the oil. 



Chapter (4)                  Fluid Dynamics 

25 

 

CHAPTER 4 

FLUID DYNAMICS 

4.1 Introduction 

Fluid dynamics is the study of fluids in motion. When fluid is in motion, its flow can be 

characterized as being one of two main types. The flow is said to be steady, or laminar, if each particle of 

the fluid follows a smooth path such that the paths of different particles never cross each other as shown 

in figure 4.1a. In steady flow, every fluid particle arriving at a given point has the same velocity. Above a 

certain critical speed, fluid flow becomes turbulent. Turbulent flow is irregular flow characterized by small 

whirlpool-like regions as shown in figure 4.1b.  

 

The term viscosity is commonly used in the description of fluid flow to characterize the degree of 

internal friction in the fluid. This internal friction, or viscous force, is associated with the resistance that 

two adjacent layers of fluid have to moving relative to each other. Viscosity causes part of the fluid’s 

kinetic energy to be converted to internal energy. Because the motion of real fluids is very complex and 

not fully understood, we make some simplifying assumptions in our approach. In our model of ideal fluid, 

we make the following four assumptions: 

1. The fluid is non-viscous. In a non-viscous fluid, internal friction is neglected. An object moving 

through the fluid experiences no viscous force. 

2. The flow is steady. In steady (laminar) flow, all particles passing through a point have the same 

velocity. 

3. The fluid is incompressible. The density of an incompressible fluid is constant. 

4. The flow is irrotational. In irrotational flow, the fluid has no angular momentum about any point. 

If a small paddle wheel placed anywhere in the fluid does not rotate about the wheel’s center of 

mass, the flow is irrotational. 

Figure 4.1: Difference between the laminar and turbulent flow. 
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4.2 The Continuity Equation 

In a fluid has a steady flow, the mass passing through 

one section of pipe in time interval (𝛥𝑡) must pass through any 

other section of the pipe in the same interval. Suppose an 

incompressible fluid flows into a pipe of nonuniform cross-

sectional area under conditions of steady flow as illustrated in 

figure 4.2. The fluid on the left moves at speed (𝜐1). During a 

time (𝛥𝑡), the fluid travels a distance;  

𝑥1 = 𝜐1𝛥𝑡 
 

If (𝐴1) is the cross-sectional area of this section of pipe, then the mass of water moving past point 1in time 

(𝛥𝑡) is  

𝛥𝑚1 = 𝜌𝛥𝑉1 = 𝜌𝐴1𝛥𝑥1 = 𝜌𝐴1𝜐1𝛥𝑡 

During this same time interval, the mass of fluid moving past point (2) is  

𝛥𝑚2 = 𝜌𝛥𝑉2 = 𝜌𝐴2𝛥𝑥2 = 𝜌𝐴2𝜐2𝛥𝑡 

𝛥𝑚1 = 𝛥𝑚2 

𝜌𝐴1𝜐1𝛥𝑡 = 𝜌𝐴2𝜐2𝛥𝑡  

The continuity equation for incompressible fluid: 

𝐴1𝜐1 = 𝐴2𝜐2                                                                     (4 − 1) 

Example (4.1): 

The heart pumps blood into the aorta, which has an inner radius of 𝟏 𝒄𝒎. the aorta feeds 32 major arteries. 

If blood in the aorta travels at a speed of 𝟐𝟖 𝒄𝒎/𝒔, at approximately what average speed does it travel in 

the arteries? Assume that blood can be treated as an ideal fluid and that the arteries each have an inner 

radius of 𝟎. 𝟐𝟏 𝒄𝒎. 

Solution: 

We start by finding the cross-sectional area of the aorta                                        𝐴1 = 𝜋𝑟𝑎𝑜𝑟𝑡𝑎
2

 

And then the total cross-sectional area of the arteries                                            𝐴2 = 32𝜋𝑟𝑎𝑟𝑡𝑒𝑟𝑦
2  

Now we apply the continuity equation and solve for the unknown speed.            𝐴1𝜐1 = 𝐴2𝜐2 
υ2 = υ1

A1

A2
 

 

𝜐2 = (0.28 𝑚/𝑠)
𝜋 × (1 × 10−2 𝑚)2

32𝜋 × (0.21 × 10−2 𝑚)2
 

𝜐2 = 0.2 𝑚/𝑠 

Figure 4.2: An incompressible fluid 

flowing horizontally through a nonuniform 

pipe 
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4.3 Bernoulli’s Equation 

As a fluid moves through a pipe of varying cross 

section and elevation, the pressure changes along the 

pipe. In 1738 the Swiss physicist Daniel Bernoulli 

(1700–1782) derived an expression that relates the 

pressure of a fluid to its speed and elevation. Bernoulli’s 

equation is not a freestanding law of physics; rather, it’s 

a consequence of energy conservation as applied to an 

ideal fluid. In deriving Bernoulli’s equation, we again 

assume that the fluid is incompressible, non-viscous, and 

flows in a non-turbulent, steady-state manner.  

      When an incompressible fluid flows along a 

horizontal flow tube of varying cross-section as illustrated in figure 4.3, its velocity changes according to 

the continuity equation. A force is required to produce this acceleration and for this force to be caused by 

the fluid surrounding a particular element of fluid, the pressure must be different in different regions. If 

the pressure were the same everywhere, the net force on any fluid element would be zero. Thus when the 

cross-section of a flow tubes varies, the pressure must be varying along the tube, even when there is no 

difference in elevation. If the elevation also changes, there is an additional pressure difference. Because 

of the continuity relation, the volume of fluid (𝛥𝑉) passing any cross-section in time (𝛥𝑡) is   ∆𝑉 =

𝐴1∆𝑥1 = 𝐴2∆𝑥2. Where 𝐴1 and 𝐴1 are the cross-sectional areas at the points (𝑎) and (𝑐) respectively. 

      To derive the Bernoulli’s equation, we apply the work-energy theorem to the fluid in a section of 

a flow tube. The work done is equal to the total change in kinetic and gravitational potential energy. 

∆𝑊 =  𝛥𝐾 + 𝛥𝑈 

We can compute the work done on this fluid during (𝛥𝑡). The force on the cross-section at (1 )is (𝑃1𝐴1) 

and that at (2) is (𝑃2𝐴2), where (𝑃1) and (𝑃2) are the pressures at the two ends. The net work done on the 

element.  

𝛥𝑊 = 𝑊1 − 𝑊2 = 𝐹1𝛥𝑋1 − 𝐹2𝛥𝑋2 

= 𝑃1𝐴1𝛥𝑋1 − 𝑃2𝐴2𝛥𝑋2 = 𝑃1𝛥𝑉 − 𝑃2𝛥𝑉 

∆𝑊 =  (𝑃1 − 𝑃2)𝛥𝑉                                                           (4 − 2) 

𝛥𝐾 = (𝐾. 𝐸)2 − (𝐾. 𝐸)1 = [½ 𝑚(𝜐2
2 −  𝜐1

2)] 

𝛥𝐾 = [½ 𝜌 ∆𝑉(𝜐2
2 −  𝜐1

2)] 

Figure 4.3: Applying conservation of energy to the 

flow of an ideal fluid. 
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𝛥𝑈 = 𝑈2 − 𝑈1 = [𝑚 𝑔(𝑦2 − 𝑦1)] 

𝛥𝑈 = [ 𝜌 ∆𝑉𝑔 (𝑦2 − 𝑦1)] 

𝛥𝐾 + 𝛥𝑈=[½ 𝜌 ∆𝑉(𝜐2
2 −  𝜐1

2)] + [ 𝜌 ∆𝑉𝑔 (𝑦2 − 𝑦1)]                       (4 − 3) 

From (4-2) and (4-3), we get: 

(𝑃1 −  𝑃2)∆𝑉 = ½ 𝜌 ∆𝑉(𝜐2
2 −  𝜐1

2) +  𝜌 ∆𝑉𝑔 (𝑦2 − 𝑦1) 

𝑃1 −  𝑃2 = ½ 𝜌 (𝜐2
2 −  𝜐1

2) +  𝜌 𝑔 (𝑦2 − 𝑦1)  

or 

𝑃1 +  ½ 𝜌 𝜐1
2  +  𝜌 𝑔 𝑦1 =  𝑃2 +  ½ 𝜌 𝜐2

2  +  𝜌 𝑔 𝑦2                                (4 − 4) 

Bernoulli’s equation states that: “The sum of the pressure (𝑃), the kinetic energy per unit volume 

(1/2 𝜌𝑣2) and the potential energy per unit volume (𝜌𝑔𝑦), has the same value at all points along a 

streamline”. 

Example (4.2): 

A horizontal pipe 𝟏𝟎 𝒄𝒎 in diameter has a smooth reduction to a pipe 𝟓 𝒄𝒎 in diameter. If the pressure 

of the water in the larger pipe is 𝟖 × 𝟏𝟎 𝟒𝑷𝒂 and the pressure in the smaller pipe is 𝟔 ×  𝟏𝟎 𝟒 𝑷𝒂, Find 

the velocities on each section of the pipes? 

Solution: 

𝑟1 = 2𝑟2 ⇒ 𝑣2 = 4𝑣1     𝑠𝑖𝑛𝑐𝑒, 𝑣 ∝ 𝑟2 

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑖𝑝 ⟺ 𝑦1 =   𝑦2 

𝑃1 +  ½ 𝜌 𝜐1
2  +  𝜌 𝑔 𝑦1 =  𝑃2 +  ½ 𝜌 𝜐2

2  +  𝜌 𝑔 𝑦2 

𝑃1 +  ½ 𝜌 𝜐1
2  =  𝑃2 +  ½ 𝜌 𝜐2

2  

(8 × 104 𝑃𝑎)  +  ½ (1000 𝑘𝑔𝑚−3) 𝜐2 =  (6 × 104 𝑃𝑎)  +  ½ (1000 𝑘𝑔/𝑚3)  (4𝜐)2 

(2 ×  104)  =  ½ (1000) 15 𝜐2 

𝜐 =  1.63 𝑚/𝑠 

𝜐1  =  1.63 𝑚/𝑠   𝑎𝑛𝑑   𝜐2  =  4𝜐1  =  4(1.63 𝑚/𝑠) = 6.52 𝑚/𝑠 

Example (4.3): 

Water is moving with a speed of 𝟓 𝒎/𝒔 through a pipe with a cross-sectional area of 𝟒 𝒄𝒎𝟐. The water 

gradually descends 𝟏𝟎 𝒎 as the pipe increases in area to 𝟖 𝒄𝒎𝟐. . (a) What is the speed of flow at the 

lower level? (b) If the pressure at the upper level is 𝟏. 𝟓 ×  𝟏𝟎𝟓 𝑷𝒂, what is the pressure at the lower level? 

Solution: 
 

(𝑎) 𝐴1𝜐1 = 𝐴2𝜐2 ⟹ 𝜐2 =
𝐴1𝜐1

𝐴2
=

(4 × 10−4 𝑚2)(5 𝑚/𝑠)

(8 × 10−4 𝑚2)
= 2.5 𝑚/𝑠 
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(𝑏) 𝑃1 −  𝑃2 = ½ 𝜌 (𝜐2
2 − 𝜐1

2) +  𝜌 𝑔 (𝑦2 − 𝑦1) 

⟹ 𝑃2 = 𝑃1 + ½ 𝜌 (𝜐1
2 −  𝜐2

2) +  𝜌 𝑔 (𝑦1 − 𝑦2) 

= [1.5 × 105 𝑃𝑎] + [
1

2
(1000 𝑘𝑔/ 𝑚3)((25 𝑚/𝑠)2 − (6.25 𝑚/𝑠)2)]

+ [(1000 𝑘𝑔/ 𝑚3)(9.81 𝑚/𝑠2 )(10 𝑚)] = 2.57 × 105 𝑃𝑎 

4.3.1 Applications of Bernoulli’s equation 

1- The equation of hydrostatics is special case of Bernoulli's equation. When 

the velocity υ1 and υ2 are zero equation (4-4) are reduces to   

𝑃1 − 𝑃2 = 𝜌𝑔 (𝑦2 − 𝑦1)                                      

2- Torricelli’s Law; an enclosed tank containing a liquid of density ρ has a hole 

in its side at a distance y1 from the tank’s bottom as illustrated in figure 4.4. 

The hole is open to the atmosphere, and its diameter is much smaller than the 

diameter of the tank. The air above the liquid is maintained at a pressure P. let 

(𝑣1) and (𝑣2) be the speed at points (1) and (2). The quantity υ1 is called the 

speed of efflux. The pressure at point 1 is atmospheric (𝑃𝑎). applying 

Bernoulli's equation to points (1) and (2) and taking the bottom of the tank as 

our reference level, we get  

𝑃1 −  𝑃2 = ½ 𝜌 (𝜐2
2 −  𝜐1

2) +  𝜌 𝑔 (𝑦2 − 𝑦1)  

[𝑃1 = 𝑃𝑎], [𝑃2 = 𝑃], [𝑣2 = 0] 𝑎𝑛𝑑 [𝑦2 − 𝑦1 = ℎ] 

𝑃𝑎 −  𝑃 = ½ 𝜌 (0 − 𝜐1
2) +  𝜌 𝑔 ℎ  

½ 𝜌𝜐1
2 = (𝑃 − 𝑃𝑎) +  𝜌 𝑔 ℎ  

𝜐1
2 =

2(𝑝 − 𝑝𝑎)

𝜌
+ 2𝑔ℎ 

𝑣1 = √
2(𝑝 − 𝑝𝑎)

𝜌
+ 2𝑔ℎ      (4 − 5) 

 

Suppose the tank is open to the atmosphere as illustrated in figure 4.5, so 

the pressure at point (1) and point (2) is atmospheric pressure. Hence, the 

speed of efflux at point (1) is 

𝑝 = 𝑝𝑎 

𝑣1 = √
2(𝑝𝑎 − 𝑝𝑎)

𝜌
+ 2𝑔ℎ 

𝑣1 = √2𝑔ℎ                                      (4 − 6) 

Figure 4.4: A liquid leaves a 

hole in a closed tank at speed 

υ1. 

Figure 4.5: A liquid leaves a 

hole in an open tank at speed υ1. 
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Example (4.4): 

A large storage tank, open at the top and filled with water, develops a small hole in its side at a point           

16 m below the water level. If the rate of flow from the leak is equal to 2.5 × 103 m3/min, determine           

(a) the speed at which the water leaves the hole and (b) the diameter of the hole. 

Solution: 

𝜐2 = √2𝑔ℎ = √2(9.8 𝑚𝑠−2)(16 𝑚) = 17.7 𝑚/𝑠 

𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 =  𝐴𝜐 ⇒ (
2.5 × 103

60
 𝑚3/𝑠) = (𝜋 (

𝑑

2
)

2

) (17.7 𝑚/𝑠) ⇒ 𝑑 = 1.73 × 10−3 𝑚 

4.4 Viscosity 

      The viscosity of a fluid is the measure of its resistance to gradual deformation by shear stress or 

tensile stress (figure 4.6).  

Viscosity is the internal friction of a fluid. Because of viscosity, a force must be exerted to cause 

one layer of a fluid to slide past another or to cause one surface to slide past another if there is a layer of 

fluid between the surfaces. Both liquid and gases exhibit viscosity, although liquids are much more viscous 

than gases.  

Viscosities of all fluids are markedly dependent on 

the temperature, increasing for gases and decreasing for 

liquids as the temperature is increased. If (𝐴) is the area 

of the fluid over which these forces are applied, the ratio 

(𝐹/𝐴) is the shear stress exerted on the fluid. The shear 

strain increases without limit so long as the stress is 

applied and the stress is found by experiment to depend not 

on the shear strain, but on its rate of change.  

• Rate of change of shear strain =  𝜐/𝑙 (change of velocity with length) 

• The rate of change of shear strain is also referred to simply as the strain rate. The coefficient of 

viscosity (𝜂) of the fluid is defined as the ratio of the shear stress to the rate of change of shear 

strain. 

𝜂 =
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛
=

𝐹/𝐴

𝜐/𝑙
                                          (4 − 7) 

The unit of viscosity in the SI units is 1𝑁. 𝑠/𝑚2, while the corresponding cgs unit is 1 𝑑𝑦𝑛𝑒. 𝑠/𝑐𝑚2. 

The common unit of viscosity is (1 𝑝𝑜𝑖𝑠𝑒).                𝟏 𝒑𝒐𝒊𝒔𝒆 =  𝟏 𝒅𝒚𝒏𝒆. 𝒔/𝒄𝒎𝟐 =  𝟏𝟎−𝟏 𝑵. 𝒔/𝒎𝟐 

Figure 4.6: Variation of velocity with height   

https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Drag_%28physics%29
https://en.wikipedia.org/wiki/Shear_stress
https://en.wikipedia.org/wiki/Tensile_stress
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Fluids which obey the Newton's law of viscosity are called as Newtonian fluids. All gases and most 

liquids which have simpler molecular formula and low molecular weight such as water, benzene, ethyl 

alcohol, hexane and most solutions of simple molecules are Newtonian fluids. 

• Fluids that are suspensions or dispersion are often non-Newtonian in their viscous behavior such 

as slurries, pastes, gels, polymer solutions. A few typical values of viscosity are illustrated in     

table 4-1. 

Table 4-1: Typical values of viscosity 

Temperature ˚C Viscosity caster oil, poise 
Viscosity of water, 

centipoise 

Viscosity of air, 

micropoise 

0 53 1.792 171 

20 9.86 1.005 181 

40 2.31 0.656 190 

60 0.8 0.469 200 

80 0.3 0.357 209 

100 0.17 0.284 218 

 

4.5 Poiseuille's law 

      When a viscous fluid flows in a tube, the flow 

velocity is different at different points of a cross-section. The 

outermost layer of fluid clings to the walls of the tube and its 

velocity is zero. The tube walls exert a backward drag on this 

layer, which in turn drags backward on the next layer beyond 

it, and so on. If the velocity is not too great, the flow is 

laminar, with a velocity that is greatest at the center of the 

tube and decreases to zero at the walls. Let us consider the 

variation of velocity with radius for a cylindrical pipe of 

inner radius (𝑅). we consider the flow of a cylindrical 

element of fluid coaxial with the pipe of radius (𝑟) and length (𝐿) as shown in figure 4.7. 

The driving force on the cylinder due to the pressure difference 

𝐹𝑑 = (𝑃1 − 𝑃2)𝐴𝑡𝑜𝑝 = (𝑃1 − 𝑃2)𝜋𝑟2                                             (4 − 8) 

The viscous drag force opposing motion depends on the surface area of the cylinder (length L and radius r) 

     𝐹𝑣 = −𝜂𝐴𝑠𝑖𝑑𝑒
𝑑𝑣

𝑑𝑟
= −𝜂2𝜋𝑟𝐿

𝑑𝑣

𝑑𝑟
                                                   (4 − 9) 

Figure 4.7: Forces on a cylindrical element 

of a viscous flow. 
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In an equilibrium condition of constant speed, where the net force goes to zero 

𝐹𝑣 = 𝐹𝑑 

−𝜂2𝜋𝑟𝐿
𝑑𝑣

𝑑𝑟
= (𝑃1 − 𝑃2)𝜋𝑟2 

−
𝑑𝑣

𝑑𝑟
= (

𝑃1 − 𝑃2

2𝜂𝐿
) 𝑟 

∫ 𝑑𝑣 = − (
𝑃1 − 𝑃2

2𝜂𝐿
) ∫ 𝑟 𝑑𝑟 

𝑣 = − (
𝑃1 − 𝑃2

4𝜂𝐿
) 𝑟2 + 𝐶                                                        (4 − 10) 

Use the condition of  (𝑟 = 𝑅 ⟺  𝑣 = 0), then substitute in equation (4-10), we get, 

0 = − (
𝑃1 − 𝑃2

4𝜂𝐿
) 𝑅2 +  𝐶 

𝐶 = (
𝑃1 − 𝑃2

4𝜂𝐿
) 𝑅2                                                                  (4 − 11) 

If we substitute in equation (4-10), we will get, 

𝑣 = − (
𝑃1 − 𝑃2

4𝜂𝐿
) 𝑟2 + (

𝑃1 − 𝑃2

4𝜂𝐿
) 𝑅2 

𝑣 = (
𝑃1 − 𝑃2

4𝜂𝐿
) (𝑅2 − 𝑟2)                                                          (4 − 12) 

Use the condition of  (𝑟 = 0 ⟺  𝑣 = 𝑣𝑚𝑎𝑥), then substitute in equation (4-12), we get, 

𝑣𝑚𝑎𝑥 = (
𝑃1 − 𝑃2

4𝜂𝐿
) 𝑅2 

Now the equation of continuity giving the volume flux for a variable speed is: 

𝑑𝑉

𝑑𝑡
= ∫  𝜐 𝑑𝐴 

𝐵𝑢𝑡: 𝑣 = (
𝑃1 − 𝑃2

4𝜂𝐿
) (𝑅2 − 𝑟2) 𝑎𝑛𝑑 𝑑𝐴 = 𝑑(𝜋𝑟2) = 2𝜋𝑟𝑑𝑟 

 𝑇ℎ𝑒𝑛,
𝑑𝑉

𝑑𝑡
= ∫  𝜐 𝑑𝐴 = ∫ (

𝑃1 − 𝑃2

4𝜂𝐿
) (𝑅2 − 𝑟2)(2𝜋𝑟𝑑𝑟) = (

𝜋(𝑃1 − 𝑃2)

2𝜂𝐿
) ∫ (𝑅2 − 𝑟2)(𝑟𝑑𝑟)

𝑅

0

 

= (
𝜋(𝑃1 − 𝑃2)

2𝜂𝐿
) ∫ (𝑟𝑅2𝑑𝑟 − 𝑟3𝑑𝑟)

𝑅

0

= (
𝜋(𝑃1 − 𝑃2)

2𝜂𝐿
) [

𝑟2𝑅

2

2

−
𝑟4

4
]

0

𝑅

= (
𝜋(𝑃1 − 𝑃2)

2𝜂𝐿
) (

𝑅

2

4

−
𝑅4

4
) 

=
𝜋(𝑃1 − 𝑃2)𝑅4

8𝜂𝐿
                                                                 (4 − 13) 

This relation is called Poiseuille's law. 
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Example (4.5): 

Water at 20 ˚C flows through a pipe of radius 1 cm. if the maximum velocity 10 cm/s. Find the pressure 

drop a long a 2 m section of pipe due to viscosity. 

Solution: 
 

𝛥𝑃 =
4𝜂𝐿𝜐𝑚𝑎𝑥

𝑅2
=

4 (1.005 × 10−2 𝑘𝑔 𝑚/𝑠)(2 𝑚)(10 × 10−2 𝑚/𝑠)

(1 × 10−2 𝑚)2
= 80.4 𝑃𝑎 

4.6 Stokes' law 

      When a sphere moves through a stationary fluid, the 

streamlines form a perfectly symmetrical pattern around the 

sphere. If the fluid has viscosity, there will be a viscous drag 

on the sphere. Suppose a sphere of radius (𝑟) falls in a 

stationary fluid in a vertical glass tube with velocity (𝑣) as 

illustrated in figure 4.8. The falling sphere in a viscous fluid 

reaches a terminal velocity (𝑣𝑇) at which the viscous retarding 

force (𝐹𝑑) plus the buoyant force (𝐹𝑏) equals the weight of 

the sphere (𝐹𝑤). The force of viscosity on a small sphere 

moving through a viscous fluid is given by  

𝐹𝑑 = 6𝜋𝑟𝑣𝑇                                                                       (4 − 14) 

Let (𝜌𝑠) be the density of the sphere and (𝜌𝑙) the density of the fluid. The weight force of the sphere is 

then   (𝐹𝑤 = 4
3⁄ 𝜋𝑟3𝜌𝑠𝑔) while, the buoyant force is given by (𝐹𝑏 = 4

3⁄ 𝜋𝑟3𝜌𝑙𝑔). 

For the   velocity to be steady, 

𝐹𝑤 = 𝐹𝑏 + 𝐹𝑑 

𝑉𝜌𝑠𝑔 = 𝑉𝜌𝐿𝑔 + 6𝜋𝑟𝑣𝑇 

(
4

3
𝜋𝑟3) 𝜌𝑠𝑔 = (

4

3
𝜋𝑟3) 𝜌𝐿𝑔 + 6𝜋𝑟𝑣𝑇 

(
4

3
𝜋𝑟3) 𝑔(𝜌𝑠 − 𝜌𝐿) = 6𝜋𝑟𝑣𝑇 

𝑣𝑇 =
2

9

(𝜌𝑠 − 𝜌𝑙)𝑔𝑟2

𝜂
                                                          (4 − 15) 

where (𝑣𝑇) is the terminal velocity and () is the coefficient of viscosity of the viscous liquid. 
 

Figure 4.8: A metal sphere falls 

through a liquid. 
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Example (4.6): 

An aluminum ball of radius 1 cm falls through water at 20 ˚C. What is the terminal velocity, assuming 

laminar flow and including buoyancy? 

Solution: 

𝜐𝑇 =
2

9
 
𝑟2𝑔 (𝜌𝑠 − 𝜌𝐿

´)

𝜂
=

2

9
 
(1 × 10−2 𝑚)2(9.81 𝑚/𝑠2) (2700 𝑘𝑔/𝑚3 − 1000 𝑘𝑔/𝑚3)

(10−3 𝑃. 𝑠)
= 37.1 𝑚/𝑠 
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PROBLEMS 

1. A garden hose pipe of inner radius 1 cm carries water at 2 m/s. the nozzle at the end has radius 0.2 cm. 

how fast dose the water moves through the nozzle? 

2. A horizontal segment of pipe tapers from a cross-section area 50 cm2 to 0.5 cm2. The pressure at the 

larger end of the pipe is 𝟏. 𝟐 × 𝟏𝟎𝟓 𝑷𝒂 and the speed is 0.04 m/s. what is the pressure at the narrow 

end of the segment? Suppose the liquid is water. 

3. Water enters a house through a pipe 𝟐 𝒄𝒎 in inside diameter, at an absolute pressure of 𝟒 × 𝟏𝟎𝟓 𝑷𝒂. 

The pipe leading to the second floor bathroom 𝟓 𝒎 above is 𝟏 𝒄𝒎 in diameter. When the flow velocity 

at the inlet pipe is 𝟒 𝒎/𝒔, find the flow velocity and pressure in the bathroom. 

4. A sniper fires rifle bullet into a gasoline tank, making a hole 𝟓𝟎 𝒎 below the surface of the gasoline. 

The tank was sealed and is under 𝟑 𝒂𝒕𝒎 absolute pressures. The stored gasoline has a density of         

𝟔𝟔𝟎 𝒌𝒈/𝒎𝟑. At what speed does the gasoline begin to shoot out of the hole? 

5. A nozzle is connected to a horizontal hose. The nozzle shoots out water moving at 𝟐𝟓 𝒎/𝒔. What is the 

gauge pressure of the water in the hose? Assuming the diameter of the nozzle is much smaller than the 

inner diameter of the hose. 

6. What is the pressure difference required to make water flow through a tube of inner radius 𝟐 𝒎𝒎 and 

length 𝟎. 𝟐 𝒎 at speed of 𝟔 𝒄𝒎/𝒔? If the viscosity coefficient of water at 𝟐𝟎 ˚𝑪 is 𝟏. 𝟎𝟎𝟓 𝒄𝒑, calculate 

the total volume of water flow per unit time? 

7. Oil at 𝟐𝟎 ˚𝑪 flows through a tube of inner radius 𝟐𝟎 𝒄𝒎 with coefficient of viscosity 𝜼 =  𝟗. 𝟖𝟔 𝒑𝒐𝒊𝒔𝒆. 

if the pressure drop along a 𝟒 𝒎 section of pipe is 𝟏𝟐𝟎𝟎 𝑷𝒂. Find the velocity of the oil flow at radius 

𝟏𝟎 𝒄𝒎.  

8. A sphere of radius 𝟏 𝒄𝒎 is dropped into a glass cylinder filled with a viscous liquid. The mass of the 

sphere is 𝟏𝟐 𝒈 and the density of the liquid is 𝟏𝟐𝟎𝟎 𝒌𝒈/𝒎𝟑. The sphere reaches a terminal speed of 

𝟎. 𝟏𝟓 𝒎/𝒔. What is the viscosity of the liquid? 

9. (a) With what terminal velocity will an air bubble 𝟏 𝒎𝒎 in diameter rise in a liquid of viscosity 𝟏𝟓𝟎 𝒄𝒑 

and density 𝟎. 𝟗 𝒈/𝒄𝒎𝟑. . (b) What is the terminal velocity of the same bubble in water? 
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CHAPTER (5) 

SIMPLE HARMONIC MOTION 

5.1 Introduction 

A very special kind of motion occurs when the force acting on a body is proportional to the 

displacement of the body from some equilibrium position. If this force is always directed toward the 

equilibrium position, repetitive back and forth motion occurs about this position. Such motion is called 

periodic motion, harmonic motion, oscillation, or vibration (the four terms are completely equivalent). 

Periodic motion is motion of an object that regularly repeats the object returns to a given position after a 

fixed time interval. With a little thought, we can identify several types of periodic motion in everyday life. 

Your car returns to the driveway each afternoon. You return to the dinner table each night to eat. The Earth 

returns to the same position in its orbit around the Sun each year, resulting in the variation among the four 

seasons. The Moon returns to the same relationship with the Earth and the Sun, resulting in a full Moon 

approximately once a month. 

5.2 Oscillation     

You are most likely familiar with several examples of periodic motion, such as the oscillations of 

a block attached to a spring, the swinging of a child on a playground swing, the motion of a pendulum, 

and the vibrations of a stringed musical instrument. In addition to these everyday examples, numerous 

other systems exhibit periodic motion. For example, the molecules in a solid oscillate about their 

equilibrium positions; electromagnetic waves, such as light waves, radar, and radio waves, are 

characterized by oscillating electric and magnetic field vectors; and in alternating-current electrical 

circuits, voltage, current, and electrical charge vary periodically with time. 

Periodic motion, from masses on springs to vibrations of atoms, is one of the most important kinds 

of physical behavior. In this chapter we take a more detailed look at Hooke’s law, where the force is 

proportional to the displacement, tending to restore objects to some equilibrium position. A large number 

of physical systems can be successfully modeled with this simple idea, including the vibrations of strings, 

the swinging of a pendulum, and the propagation of waves of all kinds. All these physical phenomena 

involve periodic motion. Periodic vibrations can cause disturbances that move through a medium in the 

form of waves. Many kinds of waves occur in nature, such as sound waves, water waves, seismic waves, 

and electromagnetic waves. 
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5.3 Simple Harmonic Motion 

A special kind of periodic motion occurs in mechanical systems when the force acting on an object 

is proportional to the position of the object relative to some equilibrium position. If this force is always 

directed toward the equilibrium position, the motion is called simple harmonic motion, which means any 

motion that repeat itself at regular intervals and its acceleration is proportional to its displacement from its 

equilibrium position. 

A particle moving along the 𝑥 − 𝑎𝑥𝑖𝑠 exhibits simple harmonic motion when (𝑋), the particle’s 

displacement from equilibrium, varies in time according to the relationship. 

𝑥 = 𝐴 cos(𝜔𝑡 + 𝜑)                                                                   (5 − 1) 

where (𝐴), (𝜔), and (𝜑) are constants. To give physical significance to these constants, we have labeled 

a plot of (𝑥) as a function of (𝑡) in figure 5.1a. 

The amplitude (𝐴) of the motion is the maximum displacement of the particle in either the positive 

or negative (𝑥) direction. The constant (𝜔) is called the angular frequency of the motion and has units of 

radians per second. The constant angle (𝜑), called the phase constant (or phase angle), is determined by 

the initial displacement and velocity of the particle. If the particle is at its maximum position, 

(𝑥 = 𝐴 𝑎𝑡 𝑡 = 0), then (𝜑 = 0) and the curve of (𝑥) versus 𝑡is as shown in figure 5.1b. If the particle is 

at some other position at (𝑡 = 0) the constants (𝜑) and (𝐴) tell us what the position was at time (𝑡 = 0). 

The quantity  (𝜔𝑡 + 𝜑) is called the phase of the motion and is useful in comparing the motions of two 

oscillators. 

From last equation the trigonometric function (𝑥) is periodic and repeats itself every time 

(𝜔𝑡) increases by (2𝜋 𝑟𝑎𝑑). The period (𝑇)of the motion is the time it takes for the particle to go through 

one full cycle. We say that the particle has made one oscillation. This definition of (𝑇) tells us that the 

value of (𝑥) at time 𝑡 equals the value of (𝑥) at time (𝑡 + 𝑇). We can show that (𝑇 = 2𝜋/𝜔) by using the 

preceding observation that the phase (𝜔𝑡 + 𝜑) increases by (2𝜋) rad in a time (𝑇): 

 

𝜔𝑡 +  𝜑 + 2 𝜋 = 𝜔(𝑡 + 𝑇) +  𝜑 

 

Hence, 𝜔𝑡 = 2𝜋, or    𝜔 = 2𝜋/𝑡 

The inverse of the period is called the frequency 𝑓of the motion. The frequency represents the 

number of oscillations that the particle makes per unit time: 

𝑓 =
1

𝑇
=

𝜔

2𝜋
 

The unit of (𝑓) are cycles per second (𝑠−1), or hertz (𝐻𝑧). Thus, 

𝜔 =
2𝜋

𝑇
= 2𝜋𝑓 
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Velocity and acceleration of simple harmonic motion: 

We can obtain the linear velocity of a particle undergoing simple harmonic motion by 

differentiating equation (5-1) with respect to time: 

𝑣 =
𝑑𝑥

𝑑𝑡
=

𝑑

𝑑𝑡
(𝐴 cos(𝜔𝑡 + 𝜑)) = −𝐴 𝜔 sin(𝜔𝑡 + 𝜑)                         (5 − 2) 

The acceleration of the particle is 

𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑

𝑑𝑡
(−𝐴 𝜔 sin(𝜔𝑡 + 𝜑)) = −𝐴 𝜔2cos(𝜔𝑡 + 𝜑) = − 𝜔2(Acos(𝜔𝑡 + 𝜑))     (5 − 3) 

Because, x = 𝐴cos (𝜔𝑡 + 𝜑), we can express an expression for a in the form: 

𝑎 = −𝜔2𝑥                                                                     (5 − 4) 

And from equation (5-2), we see that, because the sine function oscillates between ( 1), the extreme 

values of (𝑣) are (± 𝜔𝐴). Because the cosine function also oscillates between ( 1), equation (5-3) tells 

us that the extreme values of 𝑎 are (  𝜔2𝐴). Therefore, the maximum speed and the magnitude of the 

maximum acceleration of a particle moving in simple harmonic motion are 

𝒗𝒎𝒂𝒙 = 𝑨𝝎 

𝒂𝒎𝒂𝒙 = 𝑨𝝎𝟐 

Example (5.1): 

An object oscillates with simple harmonic motion along the 𝑥 − 𝑎𝑥𝑖𝑠. Its displacement from the origin 

varies with time according to the equation 

𝒙 = (𝟒. 𝟎𝟎 𝒎) 𝒄𝒐𝒔(𝝅𝒕 +
𝝅

𝟒
) 

where (𝑡) is in seconds and the angles in the parentheses are in radians.  

Figure 5.1: (a) An (𝑥 – 𝑡)curve for a particle undergoing simple harmonic motion. The amplitude of the 

motion is (𝐴), the period is (𝑇), and the phase constant is (𝜑).(b) The (𝑥 – 𝑡) curve in the special case in 

which (𝑥 = 𝐴) at 𝑇 = 0 and hence (𝜑 =  0). 
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(a) Determine the amplitude, frequency, and period of the motion. (b) Determine the maximum speed and 

maximum acceleration of the object. 

Solution: 

(𝑎)   𝐴 = 4.00 𝑚,   𝜔 = 𝜋
𝑟𝑎𝑑

𝑠
⇒ 𝑇 =

2𝜋

𝜔
=

2𝜋

(𝜋
𝑟𝑎𝑑

𝑠 )
= 2 𝑠,    𝑓 =

1

𝑇
=

1

(2 𝑠)
= 0.5 𝑠 

(𝑏)𝑣𝑚𝑎𝑥 = 𝜔𝐴 = (𝜋
𝑟𝑎𝑑

𝑠
) (4 𝑚) = 12.6 𝑚𝑠−1 

𝑎𝑚𝑎𝑥 = 𝜔2𝐴 = (𝜋
𝑟𝑎𝑑

𝑠
)

2

(4 𝑚) = 39.5 𝑚𝑠−2 

5.3.1 The Force Law 

As a model for simple harmonic motion, consider a 

block of mass m attached to the end of a spring, with the 

block free to move on a horizontal, frictionless surface 

(figure 5.2). When the spring is neither stretched nor 

compressed, the block is at the position called the 

equilibrium position of the system, which we identify as 

(𝑥 =  0). 

We can understand the motion in figure 5.2 

qualitatively by first recalling that when the block is 

displaced to a position (𝑥), the spring exerts on the block a 

force that is proportional to the position and given by 

Hooke’s law 

𝐹 = −𝑘𝑥 

where (𝑘) is the spring constant and 𝑥is the displacement 

of the object from its equilibrium position. This force law 

for springs was discovered by Robert Hooke in 1678 and is 

known as Hooke’s law. The value of (𝑘) is a measure of 

the stiffness of the spring. Stiff springs have large (𝑘) values, and soft springs have small (𝑘) values. The 

negative sign means that the force exerted by the spring is always directed opposite the displacement of 

the object. We call this a restoring force because it is always directed toward the equilibrium position and 

therefore opposite the displacement from equilibrium. That is, when the block is displaced to the right of 

(𝑥 =  0) in figure 5.2, then the position is positive and the restoring force is directed to the left. When the 

Figure 5.2: A block attached to a spring 

moving on a frictionless surface. (a) When 

the block is displaced to the right of 

equilibrium (𝑥 >  0), the force exerted by 

the spring acts to the left. (b) When the block 

is at its equilibrium position (𝑥 =  0), the 

force exerted by the spring is zero. (c) When 

the block is displaced to the left of 

equilibrium (𝑥 < 0), the force exerted by the 

spring acts to the right. 
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block is displaced to the left of (𝑥 =  0), then the position is negative and the restoring force is directed 

to the right. 

Applying Newton’s second law to the motion of the block, 

𝐹 = 𝑚𝑎     "𝑁𝑒𝑤𝑡𝑜𝑛′𝑠 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑤" 

𝑎 = 𝜔2𝑥      " 𝑆. 𝐻. 𝑀" 

⇒ 𝐹 = 𝑚𝜔2𝑥 

𝐹 = −𝑘𝑥   "𝐻𝑜𝑜𝑘′𝑠 𝑙𝑎𝑤" 

⇒ 𝑘 = 𝑚𝜔2 

𝜔 = √
𝑘

𝑚
 

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
 

  To express the period and frequency of the motion for the particle–spring system in terms of the 

characteristics (𝑚) and (𝑘) of the system as 

                                ⇒ 𝑻 = 𝟐𝝅√
𝒎

𝒌
                  ⇒ 𝒇 =

𝟏

𝟐𝝅
√

𝒌

𝒎
 

That is, the period and frequency depend only on the mass of the particle and the force constant of 

the spring, and not on the parameters of the motion, such as (𝐴) or (𝜑). As we might expect, the frequency 

is larger for a stiffer spring (larger value of (𝑘)) and decreases with increasing mass of the particle. 

       Simple harmonic motion occurs when the net force along the direction of motion obeys Hooke’s 

law, when the net force is proportional to the displacement from the equilibrium point and is always 

directed toward the equilibrium point. 

Example (5.2): 

A car with a mass of 𝟏𝟑𝟎𝟎 𝒌𝒈 is constructed so that its frame is supported by four springs. Each spring 

has a force constant of 𝟐𝟎𝟎𝟎𝟎 𝑵/𝒎. If two people riding in the car have a combined mass of 𝟏𝟔𝟎 𝒌𝒈, 

find the frequency of vibration of the car after it is driven over a pothole in the road. 

Solution: 
We assume that the mass is evenly distributed. Thus, each spring supports one fourth of the load. The total 

mass is 1460 (1300+160) kg, and therefore each spring supports 365 kg. 
Hence, the frequency of vibration 

𝑓 =
1

2𝜋
√

𝑘

𝑚
=

1

2𝜋
√

(2000 𝑁𝑚−1)

((1300 + 160)/4)
= 1.18 𝑠−1 
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Example (5.3): 

A block with a mass of 𝟐𝟎𝟎 𝒈 is connected to a light spring for which the force constant is 𝟓 𝑵/𝒎 and is 

free to oscillate on a horizontal, frictionless surface. The block is displaced 𝟓 𝒄𝒎 from equilibrium and 

released from rest (a) Find the period of its motion.(b) Determine the maximum speed of the block.(c) 

What is the maximum acceleration of the block? 

Solution: 

(𝑎)  𝑇 = 2𝜋√
𝑚

𝑘
= 2𝜋√

( 200 × 10−3 𝑘𝑔)

(5 𝑁𝑚−1)
= 1.26 𝑠 

𝜔 =
2𝜋

𝑇
=

2𝜋

(1.26 𝑠)
= 5 𝑟𝑎𝑑/𝑠 

(𝑏)𝑣𝑚𝑎𝑥 = 𝜔𝐴 = (5
𝑟𝑎𝑑

𝑠
) (5 × 10−2 𝑚) = 0.25 𝑚𝑠−1 

(𝑐)𝑎𝑚𝑎𝑥 = 𝜔2𝐴 = (5
𝑟𝑎𝑑

𝑠
)

2

(5 × 10−2 𝑚) = 1.25 𝑚𝑠−2 

5.3.2 Simple Pendulum 

 A simple pendulum is another mechanical system 

that exhibits periodic motion.  It consists of a small bob of 

mass m suspended by a light string of length (𝐿) fixed at its 

upper end, as in figure 5.3.  (By a light string, we mean that 

the string’s mass is assumed to be very small compared with 

the mass of the bob and hence can be ignored.) When 

released, the bob swings to and fro over the same path, but is 

its motion simple harmonic? 
Answering this question requires examining the 

restoring force, the force of gravity that acts on the 

pendulum. The pendulum bob moves along a circular arc, 

rather than back and forth in a straight line. When the 

oscillations are small, however, the motion of the bob is 

nearly straight, so Hooke’s law may apply approximately. 
In figure 5.3, (𝑥)  is the displacement of the bob from equilibrium along the arc. Hooke’s law is 

(𝐹 = −𝑘𝑥), so we are looking for a similar expression involving 𝐹𝑡.  (𝐹𝑡 = −𝑘𝑥), where (𝐹𝑡) is the force 

acting in a direction tangent to the circular arc. From the figure, the restoring force is 

𝐹𝑡  =  − 𝑚 𝑔 𝑠𝑖𝑛 𝜃 

Figure 5.3: A simple pendulum consists of 

a bob of mass 𝑚suspended by a light string 

of length (𝐿). (𝐿is the distance from the 

pivot to the center of mass of the bob.) The 

restoring force that causes the pendulum to 

undergo simple harmonic motion is the 

component of gravitational force tangent to 

the path of motion, (𝑚𝑔 𝑠𝑖𝑛 𝜃). 
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This expression isn’t of the form (𝐹 = −𝑘𝑥), so in general, the motion of a pendulum is not simple 

harmonic. If we restrict the motion to small angles, the approximation (𝑠𝑖𝑛 𝜃 ≈ 𝜃) is valid and 

substituting (𝜃 = 𝑥/𝐿), we obtain the restoring force as 

𝑠𝑚𝑎𝑙𝑙 𝜃 ⇒ 𝑠𝑖𝑛 𝜃 ≈  𝜃 ≈
𝑥

𝐿
 

𝐹𝑡 = −
𝑚𝑔

𝐿
𝑥 = −𝑘𝑥 

⇒ 𝑘 =
𝑚𝑔

𝐿
 

Recall that for the object spring system, the angular frequency is given by equation 

𝜔 = √
𝑘

𝑚
= √

𝑚𝑔/𝐿

𝑚
= √

𝑔

𝐿
 

2𝜋

𝑇
= √

𝑔

𝐿
 

The period (𝑇) and frequency (𝑓) of the motion are 
⇒ 𝑻 = 𝟐𝝅√

𝑳

𝒈
                                   ⇒ 𝒇 =

𝟏

𝟐𝝅
√

𝒈

𝑳
 

In other words, the period and frequency of a simple pendulum depends only on the length of the 

string and the acceleration due to gravity. Because the period is independent of the mass, we conclude that 

all simple pendulums that are of equal length and are at the same location (so that (𝑔) is constant) oscillate 

with the same period. 
The simple pendulum can be used as a time keeper because its period depends only on its length 

and the local value of (𝑔). It is also a convenient device for making precise measurements of the free-fall 

acceleration. Such measurements are important because variations in local values of (𝑔) can provide 

information on the location of oil and of other valuable underground resources. 
Example (5.4): 

Using a small pendulum of length 𝟎. 𝟏𝟕𝟏 𝒎, a geophysicist counts 72 complete swings in a time of 60 s. 

What is the value of (𝑔) in this location? 

Solution: 

Calculate the period by dividing the total elapsed time by the number of complete oscillations: 

𝑇 =
𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠
=

(60 𝑠)

(72 𝑜𝑠𝑠𝑐𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑠)
= 8.33 𝑠  

𝑇 = 2𝜋√
𝐿

𝑔
⇒ 𝑔 =

4𝜋2𝐿

𝑇2
=

4𝜋2(0.171 𝑚)

(8.33 𝑠)2
= 9.711 𝑚𝑠−2 
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PROBLEMS 

1. A simple harmonic oscillator takes 𝟏𝟐 𝒔 to undergo five complete vibrations. Find (a) the period of its 

motion, (b) the frequency in hertz, and (c) the angular frequency in radians per second. 

2. A 𝟎. 𝟔 𝒌𝒈 block attached to a spring with force constant 𝟏𝟑𝟎 𝑵/𝒎 is free to move on a frictionless, 

horizontal surface. The block is released from rest after the spring is stretched 𝟎. 𝟏𝟑 𝒎. At that instant, 

find (a) the force on the block and (b) its acceleration. 

3. When a 𝟒. 𝟐𝟓 𝒌𝒈 object is placed on top of a vertical spring, the spring compresses a distance of 

𝟐. 𝟔𝟐 𝒄𝒎. What is the force constant of the spring? 

4. At an outdoor market, a bunch of bananas is set into oscillatory motion with amplitude of 𝟐𝟎 𝒄𝒎 on a 

spring with a force constant of 𝟏𝟔 𝑵/𝒎. It is observed that the maximum speed of the bunch of bananas 

is 𝟒𝟎 𝒄𝒎/𝒔. What is the weight of the bananas in Newton's? 
5. The period of motion of an object spring system is 𝟎. 𝟐𝟐𝟑 𝒔 when a 𝟑𝟓. 𝟒 𝒈 object is attached to the 

spring. What is the force constant of the spring? 
 

6. A man enters a tall tower, needing to know its height. He notes that a long pendulum extends from the 

ceiling almost to the floor and that its period is 𝟏𝟓. 𝟓 𝒔. (a) How tall is the tower? (b) If this pendulum 

is taken to the Moon, where the free-fall acceleration is 𝟏. 𝟔𝟕𝒎/𝒔𝟐, what is the period there? 

7. A simple pendulum makes 120 complete oscillations in 𝟑 𝒎𝒊𝒏 at a location where 𝒈 = 𝟗. 𝟖 𝒎/𝒔𝟐. 

Find (a) the period of the pendulum and (b) its length. 

 

8. A “seconds” pendulum is one that moves through its equilibrium position once each second. (The period 

of the pendulum is 𝟐 𝒔.) The length of a second's pendulum is 𝟎. 𝟗𝟗𝟐𝟕 𝒎 at Tokyo and 𝟎. 𝟗𝟗𝟒𝟐 𝒎 at 

Cambridge, England. What is the ratio of the free-fall accelerations at these two locations? 
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CHAPTER (6) 

WAVES 

6.1 Introduction 

      When you drop a pebble into a pool of water, the disturbance produces water waves, which move 

away from the point where the pebble entered the water. A leaf floating near the disturbance moves up 

and down and back and forth about its original position but doesn’t 

undergo any net displacement attributable to the disturbance. This 

means that the water wave (or disturbance) moves from one place to 

another, but the water isn’t carried with it. When we observe a water 

wave, we see a rearrangement of the water’s surface. Without the 

water, there wouldn’t be a wave. Similarly, a wave traveling on a 

string wouldn’t exist without the string. Sound waves travel through 

air as a result of pressure variations from point to point. Therefore, we 

can consider a wave to be the motion of a disturbance as in figure 6.1. 

      The world is full of waves, the two main types being mechanical waves and electromagnetic 

waves. In the case of mechanical waves, some physical medium is being disturbed in our pebble and beach 

ball example, elements of water are disturbed. Electromagnetic waves do not require a medium to 

propagate; some examples of electromagnetic waves are visible light, radio waves, television signals, and 

x-rays as in figure 6.2. 

Here, in this part of the book, we study only mechanical waves. The wave concept is abstract. 

When we observe what we call a water wave, what we see is a rearrangement of the water’s surface. 

Without the water, there would be no wave. A wave traveling on a string would not exist without the 

string. Sound waves could not travel from one point to another if there were no air molecules between the 

two points.      

Figure 6.2: Types of waves. 

Figure 6.1: Wave as motion 

of a disturbance. 
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      With mechanical waves, what we interpret as a wave corresponds to the propagation of a 

disturbance through a medium. Considering further the beach ball floating on the water, note that we have 

caused the ball to move at one point in the water by dropping a pebble at another location. The ball has 

gained kinetic energy from our action, so energy must have transferred from the point at which we drop 

the pebble to the position of the ball. This is a central feature of wave motion energy is transferred over a 

distance, but matter is not. 

All waves carry energy, but the amount of energy transmitted through a medium and the 

mechanism responsible for that transport of energy differ from case to case. For instance, the power of 

ocean waves during a storm is much greater than the power of sound waves generated by a single human 

voice. 

6.2 Types of Mechanical Waves 

      All mechanical waves require (1) some source of disturbance, (2) a medium that can be disturbed, 

and (3) some physical mechanism through which elements of the medium can influence each other. There 

are two types of mechanical waves as illustrated in figure 6.3.  

1- Transverse waves  

• When the particles of the medium vibrate upwards and downwards, the wave transfers to the 

medium in the form of crests and troughs 

• The direction of vibration is perpendicular to the direction of wave propagation. 

• The work done by the vibrating source is stored in the form of:  

1. Potential energy 

2. Kinetic energy 

Transverse waves are defined as the wave in which the vibration of the medium particles is perpendicular 

to the direction of the wave propagation.  

2- Longitudinal Waves 

• When the particles of the medium vibrate to right and left, the wave transfers to the medium in the 

form of compressions and rarefactions.  

• The direction of vibration is same to the direction of wave propagation. 

• The work done by the vibrating source is stored in the form of:  

1. Potential energy. 

2. Kinetic energy. 

Longitudinal waves are defined as the wave in which the vibration of the medium particles is same to the 

direction of the wave Propagation. 
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6.3 Waves in a Stretched String 

      Figure 6.4 shows a snapshot of a wave 

moving through a medium the point at which the 

displacement of the element from its normal 

position is highest is called the crest of the wave 

and the point at which the displacement of the 

element from its normal position is lowest is 

called the trough of the wave. The distance from 

one crest (trough) to the next is called the 

wavelength 𝜆 (Greek lambda). More generally, the wavelength is the minimum distance between any two 

identical points on adjacent waves, as shown in figure 6.4. If you count the number of seconds between 

the arrivals of two adjacent crests at a given point in space, you are measuring the period 𝑇 of the waves. 

In general, the period is the time interval required for two identical points of adjacent waves to pass by a 

point. The period of the wave is the same as the period of the simple harmonic oscillation of one element 

of the medium. The same information is more often given by the inverse of the period, which is called the 

frequency (𝑓). In general, the frequency of a periodic wave is the numbers of crests (or troughs, or any 

Figure 6.3: Types of mechanical waves. 

Figure 6.4: Wave in a stretched string. 
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other point on the wave) that pass a given point in a unit time interval. The frequency of a sinusoidal wave 

is related to the period by the expression: 

𝑓 =
1

𝑇
 

The frequency of the wave is the same as the frequency of the simple harmonic oscillation of one 

element of the medium. The most common unit for frequency is (𝑠−1), or ℎ𝑒𝑟𝑡𝑧 (𝐻𝑧). The corresponding 

unit for (𝑇) is seconds. The maximum displacement from equilibrium of an element of the medium is 

called the amplitude (𝑌𝑚 )of the wave. 

We can use these definitions to derive an expression for the speed of a wave. We start with the 

defining equation for the wave speed (𝑣): 

𝑣 = ∆𝑥
∆𝑡⁄  

The wave speed is the speed at which a particular part of the wave say, a crest moves through the 

medium. A wave advances a distance of one wavelength in a time interval equal to one period of the 

vibration. Taking (∆𝑥 = 𝜆) and ∆(𝑡 = 𝑇), we see that: 

𝑣 = 𝜆
𝑇⁄  

Because the frequency is the reciprocal of the period, we have: 

𝑣 = 𝜆𝑓 

This important general equation applies to many different types of waves, such as sound waves 

and electromagnetic waves. 

 

6.4 Wave Equation  

The wave equation is periodic displacement function 𝑌 (𝑥, 𝑡) in the time (𝑡) and position of 

oscillating particle (𝑥) throughout the wave propagation direction. The mathematical formula of wave 

equation can be represented as: 

𝑌(𝑥, 𝑡) = 𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)                                                   (6 − 1) 

This equation can represent the motion (vibration) of stretched string, where (𝑌𝑚) is the amplitude, 

(𝑘) is the angular wave number, (𝜔) is the angular frequency. The sign between the terms in the phase of 

equation determine the direction of wave propagation as following:  

𝑖) (𝑘 𝑥 −  𝜔 𝑡) means that the wave propagates from left to right direction (+𝑣𝑒 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛). 

𝑖𝑖) (𝑘 𝑥 +  𝜔 𝑡) means that the wave propagates from right to left direction (− 𝑣𝑒 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛). 

𝑖𝑖𝑖) (𝑘) is the angular wave number, (𝑘 = 2𝜋/𝜆) 

𝑖𝑣) (𝑘 = 2𝜋𝐾), ⇒ (𝐾) is the wave number, (𝐾 = 1/𝜆) 

𝑖𝑣) (𝜔) is the angular frequency, (𝜔 = 2 𝜋𝑓), ⟹ (𝑓) is the frequency 
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Transverse velocity and transverse acceleration of vibration string  

• Speed 𝑣 (𝑥, 𝑡), taking the derivative of the wave equation with respect to (𝑡) while (𝑥) is a constant 

𝑣(𝑥, 𝑡) =
𝑑

𝑑𝑡
𝑌(𝑥, 𝑡)                                                                                

=
𝑑

𝑑𝑡
𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)                                                                             

∴ 𝑣(𝑥, 𝑡) = −𝜔𝑌𝑚 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)                                                  (6 − 2) 

• The negative sign indicates that, the velocity decrease with increase the wave displacement 

• To obtain the maximum transverse velocity substitute by maximum value of cos(𝑘𝑥 − 𝜔𝑡) which 

is equal one (𝑐𝑜𝑠 0 = 1). 

𝑣𝑚𝑎𝑥 = −𝜔𝑌𝑚 

• Acceleration 𝑎 (𝑥, 𝑡), taking the derivative of above equation with respect to time  

𝑎(𝑥, 𝑡) =
𝑑

𝑑𝑡
𝑣(𝑥, 𝑡) 

=
𝑑

𝑑𝑡
[−𝜔𝑌𝑚 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)] 

∴ 𝑎(𝑥, 𝑡) = −𝜔2𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)                                        (6 − 3) 

• The negative sign indicates that, the acceleration decrease with increase the wave displacement 

(this equation of simple harmonic motion). 

• To obtain the maximum transverse velocity substitute by maximum value of    which is equal one 

(𝑠𝑖𝑛 0 = 1). 

𝑎𝑚𝑎𝑥 = −𝜔2𝑌𝑚                                                            (6 − 4) 

Example (6.1): 

Sinusoidal wave traveling along a string is described by:   

𝒀(𝒙, 𝒕) = 𝟎. 𝟎𝟎𝟑𝟐𝟕 𝒔𝒊𝒏(𝟕𝟐. 𝟏 𝒙 − 𝟐. 𝟕𝟐 𝒕) 

in which the numerical constants are in SI units. (a) What is the amplitude of this wave? (b) What are the 

wavelength and the period of this wave? (c) What are the wave number and the frequency of this wave (d) 

What is the speed of this wave. 

Solution: 

(𝑎)  𝑌𝑚 =  0.00327 𝑚 

(𝑏)  𝜆 =
2𝜋

𝑘
=

2𝜋

(72.1
𝑟𝑎𝑑
𝑚 )

= 0.0871 𝑚,          𝑇 =
2𝜋

𝜔
=

2𝜋

(2.72 𝑟𝑎𝑑/𝑠)
= 2.31 𝑠 
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(𝑐)  𝐾 =
1

𝜆
=

1

(0.0871 𝑚)
= 11.5 𝑚−1,           𝑓 =

1

𝑇
=

1

(2.31 𝑠)
= 0.433 𝐻𝑧 

(𝑑)  𝑣 =
𝜔

𝑘
=

(2.72 𝑟𝑎𝑑/𝑠)

(72.1
𝑟𝑎𝑑
𝑚 )

= 0.0377 𝑚/𝑠 

Example (6.2):  

Sinusoidal wave traveling along a string is described by: 

𝒀(𝒙, 𝒕) = 𝟎. 𝟎𝟎𝟑𝟐𝟕 𝒔𝒊𝒏(𝟕𝟐. 𝟏 𝒙 − 𝟐. 𝟕𝟐 𝒕) 

What is the displacement 𝑌 at 𝒙 =  𝟐𝟐. 𝟓 cm and 𝒕 =  𝟏𝟖. 𝟗 𝒔? 

Solution: 

𝑌(𝑥, 𝑡) = (0.00327 𝑚) 𝑠𝑖𝑛((72.1
𝑟𝑎𝑑

𝑚
) 𝑥 − (2.72

𝑟𝑎𝑑

𝑠
) 𝑡)

= (0.00327 𝑚) 𝑠𝑖𝑛((72.1
𝑟𝑎𝑑

𝑚
) ((22.5 × 10−2 𝑚)) − (2.72

𝑟𝑎𝑑

𝑠
) (18.9 𝑠))

= 0.00192 𝑚 

Example (6.3): 

In Example (6.2), the displacement 𝒀 =  𝟎. 𝟎𝟎𝟏𝟗𝟐 𝒎 at 𝒙 =  𝟐𝟐. 𝟓 𝒄𝒎 and 𝒕 =  𝟏𝟖. 𝟗 𝒔? (a) What is 

the transverse speed of the same element of the string? (b) What is the transverse acceleration of the same 

element of the string? 

Solution: 

𝑢 = −𝜔𝑦𝑚 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)

= −(2.72 𝑟𝑎𝑑/𝑠)(0.00327 𝑚) 𝑐𝑜𝑠((72.1 𝑟𝑎𝑑/𝑚)(22.5 × 10−2 𝑚)

− ((2.72 𝑟𝑎𝑑/𝑠)(18.9 𝑠)) = 0.0072 𝑚/𝑠 

𝑎 = −𝜔2𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)  = −(2.72 𝑟𝑎𝑑/𝑠)2(0.00327 𝑚) 𝑠𝑖𝑛(72.1 𝑟𝑎𝑑/𝑚)(22.5 × 10−2 𝑚)

− (2.72 𝑟𝑎𝑑/𝑠)(18.9 𝑠) = 0.0142 𝑚/𝑠 

6.5 Wave Speed on a Stretched String  

    For a vibrating string, there are two speeds to consider. One is the speed of the physical string that 

vibrates up and down, transverse to the string, in the 𝑦 −  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. The other is the wave speed, which 

is the rate at which the disturbance propagates along the length of the string in the 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. We 

wish to find an expression for the wave speed. 
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Derivation by using Newton’s Second Law 

Consider a small string element of length (∆𝐿) and its mass (∆𝑚). It forms a single pulse such as 

that in figure an arc of a circle of radius (𝑅) and making an angle (2𝜃). This element oscillates under the 

action of two forces,  

      (1) Tangential tension force (𝜏) acts in both side of element.  

❖ The horizontal components (x-axis) of tension forces cancel  

 

                             𝜏𝑐𝑜𝑠𝜃 − 𝜏𝑐𝑜𝑠𝜃 = 0 

❖ The vertical components (y-axis) add to form a radial restoring force. 

 

𝐹𝜏 = 𝜏𝑠𝑖𝑛𝜃 + 𝜏𝑠𝑖𝑛𝜃 = 2𝜏𝑠𝑖𝑛𝜃 

(2) Centripetal force, (𝐹𝑐) (imagine the element as part of circle of radius (𝑅) 

𝐹𝑐 = ∆𝑚
𝑣2

𝑅
 

𝐹𝑡 = 𝐹𝑐 

2𝜏 𝑠𝑖𝑛 𝜃 = ∆𝑚
𝑣2

𝑅
 

From figure 6.5;                   𝑠𝑖𝑛𝜃 =
Δ𝑙

𝑅
,       𝜇 =

Δ𝑚

Δ𝑙
 

2𝜏𝜃 = 𝜇∆𝐿
𝑣2

𝑅
 

𝜏(2𝜃) = 𝜇∆𝐿
𝑣2

𝑅
 

Figure 6.5: (a) To obtain the speed v of a wave on a stretched string, it is convenient to describe 

the motion of a small element of the string in a moving frame of reference. (b) In the moving 

frame of reference, the small element of length ∆𝑠 moves to the left with speed 𝑣. The net force 

on the element is in the radial direction because the horizontal components of the tension force 

cancel. 
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𝜏(
∆𝐿

𝑅
) = 𝜇∆𝐿

𝑣2

𝑅
 

𝜏 = 𝜇𝑣2 ⟹ 𝑣 = √
𝜏
𝜇

                                                            (6 − 5) 

where 𝜏 the tension in the string and (µ) is the mass of the string per unit length, called the linear 

density. From equation (6-5), it’s clear that a larger tension τ results in a larger wave speed, whereas a 

larger linear density (µ) gives a slower wave speed, as expected. According to equation (6-5), the 

propagation speed of a mechanical wave, such as a wave on a string, depends only on the properties of the 

string through which the disturbance travels. It doesn’t depend on the amplitude of the vibration. This 

turns out to be generally true of waves in various media. 

  The dimensional analysis can easily verify that the expression is dimensionally correct. Note that 

the dimensions of (𝜏) are 𝑀𝐿/𝑇2, and the dimensions of (µ) are (𝑀/𝐿). The dimensions of (𝜏 / µ) are 

therefore (𝐿2/𝑇2), so those of √𝜏 / µ are 𝐿/𝑇, giving the dimensions of speed. No other combination of 

(𝜏) and (µ) is dimensionally correct, so in the case in which the tension and mass density are the only 

relevant physical factors, we have verified equation (6-5) up to an overall constant. According to equation 

(6-5), we can increase the speed of a wave on a stretched string by increasing the tension in the string. 

Increasing the mass per unit length, on the other hand, decreases the wave speed. These physical facts lie 

behind the metallic windings on the bass strings of pianos and guitars. The windings increase the mass per 

unit length, m, decreasing the wave speed and hence the frequency, resulting in a lower tone. Tuning a 

string to a desired frequency is a simple matter of changing the tension in the string. 

Example (6.4): 

A uniform cord has a mass of 𝟎. 𝟑 𝒌𝒈 and a length of 𝟔 𝒎. The cord passes over a pulley and supports a 

𝟐 𝒌𝒈 object. Find the speed of a pulse traveling along this cord. 

Solution: 

𝑣 = √
𝜏

𝜇
= √

𝑚𝑔

𝑀/𝐿
= √

(0.3 𝑘𝑔)(9.81 𝑚/𝑠2)

(2 𝑘𝑔)/(6 𝑚)
= 19.8 𝑚/𝑠 

6.6 Rate of Energy Transfer by Sinusoidal Waves on Strings 

Waves transport energy as kinetic and elastic potential energy when they propagate through a 

medium. Consider a sinusoidal wave traveling on a string (figure 6.6). The source of the energy is some 

external agent at the left end of the string, which does work in producing the oscillations. We can consider 

the string to be a non-isolated system. As the external agent performs work on the end of the string, moving 

it up and down, energy enters the system of the string and propagates along its length. Let us focus our 
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attention on an element of the string of length, (∆𝑥) and mass, (∆𝑚). All elements have the same angular 

frequency (𝜔) and the same amplitude (𝐴). The kinetic energy (𝐾) associated with a moving particle is  

(𝐾 =  1 2⁄ 𝑚𝑣2). If we apply this equation to an element of length (∆𝑥) and mass ∆(𝑚), we see that the 

kinetic energy (∆𝐾) of this element is 

𝐾 =  1 2⁄ (∆𝑚)𝑣2 

 

 

 

 
 

Figure 6.6: A sinusoidal wave traveling along the 𝑥 − 𝑎𝑥𝑖𝑠 on a stretched string. Every element moves vertically, 

and every element has the same total energy. 

 

where (𝑣) is the transverse speed of the element. If (µ) is the mass per unit length of the string, then the 

mass (∆𝑚) of the element of length (∆𝑥) is equal to (µ ∆𝑥). Hence, we can express the kinetic energy of 

an element of the string as 

∆𝐾 =  
2

1
(µ ∆𝑥) 𝑣2 

As the length of the element of the string shrinks to zero, this becomes a differential relationship:      

𝑑𝐾 =  
2

1
(𝑑𝑚) 𝑣2 

𝑑𝐾 =  
2

1
(µ 𝑑𝑥) 𝑣2 

We substitute for the general transverse speed of a simple harmonic oscillator: 

𝑑𝐾 =  
2

1
(µ 𝑑𝑥) (−𝜔𝑦𝑚 cos(𝑘𝑥 − 𝜔𝑡))2 

𝑑𝐾 =  
2

1
(µ 𝑑𝑥) 𝜔2𝑦𝑚

2 cos2(𝑘𝑥 − 𝜔𝑡) 

Dividing the previous equation by (𝑑𝑡) gives the rate at which kinetic energy passes through a string 

element, and (𝑑𝑥/𝑑𝑡) equals the speed of wave (𝑣). 

𝑑𝐾

𝑑𝑡
=  

2

1
(µ 

𝑑𝑥

𝑑𝑡
) 𝜔2𝑦𝑚

2 cos2(𝑘𝑥 − 𝜔𝑡) 

𝑑𝐾

𝑑𝑡
=  

2

1
µ 𝑣 𝜔2𝑦𝑚

2 cos2(𝑘𝑥 − 𝜔𝑡) 

The average rate at which kinetic energy is transported is 
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𝑑𝐾

𝑑𝑡

̅̅ ̅̅
=  

2

1
µ 𝑣 𝜔2𝑦𝑚

2 cos2(𝑘𝑥 − 𝜔𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

cos2(𝑘𝑥 − 𝜔𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1

2
 

𝑑𝐾

𝑑𝑡

̅̅ ̅̅
=  

2

1
µ 𝑣 𝜔2𝑦𝑚

2 (
1

2
) 

𝑑𝐾

𝑑𝑡

̅̅ ̅̅
=  

1

4
µ 𝑣 𝜔2𝑦𝑚

2  

In addition to kinetic energy, each element of the string has potential energy associated with it due to its 

displacement from the equilibrium position and the restoring forces from neighboring elements. A similar 

analysis to that above for the total potential energy (𝑈) in one wavelength will give exactly the same 

result: 

𝑑𝑈

𝑑𝑡

̅̅ ̅̅
=  

1

4
µ 𝑣 𝜔2𝑦𝑚

2  

𝑃̅ =
𝑑𝐾

𝑑𝑡

̅̅ ̅̅
+

𝑑𝑈

𝑑𝑡

̅̅ ̅̅
 

=  
1

4
µ 𝑣 𝜔2𝑦𝑚

2 +
1

4
µ 𝑣 𝜔2𝑦𝑚

2 

∴ 𝑷̅ =
𝟏

𝟐
µ 𝒗 𝝎𝟐𝒚𝒎

𝟐                                                                   (6 − 6) 

This expression shows that the rate of energy transfer by a sinusoidal wave on a string is proportional to 

(a) the square of the frequency, (b) the square of the amplitude, and (c) the wave speed. In fact: the rate of 

energy transfer in any sinusoidal wave is proportional to the square of the angular frequency and to the 

square of the amplitude. 

Example (6.5): 

A string has linear density µ =  𝟓𝟐𝟓 𝒈/𝒎 and is under tension 𝝉 =  𝟒𝟓 𝑵. We send a sinusoidal wave 

with frequency 𝒇 =  𝟏𝟐𝟎 𝑯𝒛 and amplitude 𝒚𝒎 =  𝟖. 𝟓 𝐦𝐦  along the string. At what average rate does 

the wave transport energy? 

Solution: 

𝜔 =  2𝜋𝑓 =  2(3.14)(120 𝐻𝑧)  =  754 𝑟𝑎𝑑/𝑠 
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𝑣 = √
𝜏

𝜇
= √

(45 𝑁)

(525 × 10−3 𝑘𝑔/𝑚)
= 9.26 𝑚/𝑠 

𝑃𝑎𝑣 =
1

2
𝜇𝑣𝜔2𝑦𝑚

2 =
1

2
(525 × 10−3

𝑘𝑔

𝑚
) (9.26

𝑚

𝑠
) (754

𝑟𝑎𝑑

𝑠
)

2

(8.5 × 10−3 𝑚) = 100𝑊 

6.7 Interference of Waves 

It is overlap of two or more waves to produce a new wave has a new intensity. The waves must 

have same amplitude, form, frequency or wavelength and same propagation direction to be interfere. 

The phase or path difference between two waves is constant with time. Interference is very important in 

the application of communication science. 

To derive an expression for interference of wave;   

• Let two wave traveling along x-axis with constant phase difference between them (𝜑), their 

equations given by 

𝑌1 = 𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) 

𝑌2 = 𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡 + 𝜙) 

• From the principle of superposition, the resultant wave is the algebraic sum of the two interfering 

waves and has displacement  

𝑌 = 𝑌1 + 𝑌2 

= 𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) + 𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡 + 𝜙) 

= 𝑌𝑚 [𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) + 𝑠𝑖𝑛(𝑘𝑥 + 𝜔𝑡 + 𝜙)] 

= 𝑌𝑚 [𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) + 𝑠𝑖𝑛(𝑘𝑥 + 𝜔𝑡 + 𝜙)] 

• We can write the sum of the sines of two angles (𝛼) and (𝛽) as;  

𝑠𝑖𝑛 𝛼 + 𝑠𝑖𝑛 𝛽 = 2 𝑠𝑖𝑛 [
𝛼 + 𝛽

2
] 𝑐𝑜𝑠 [

𝛼 − 𝛽

2
] 

= 2𝑌𝑚 𝑠𝑖𝑛 [
(𝑘𝑥 − 𝜔𝑡) + (𝑘𝑥 − 𝜔𝑡 + 𝜙)

2
] 𝑐𝑜𝑠 [

(𝑘𝑥 − 𝜔𝑡) − (𝑘𝑥 − 𝜔𝑡 + 𝜙)

2
] 

∴ 𝒀 = [𝟐𝒀𝒎 𝒄𝒐𝒔(
𝝓

𝟐
)] 𝒔𝒊𝒏 (𝒌𝒙 − 𝝎𝒕 +

𝝓

𝟐
)                              (6 − 7) 

The above equation is the resultant wave of interference; it is sinusoidal wave traveling in the direction of 

increasing (𝑥). The interference wave equation dependent on phase constant is φ  

The amplitude of interference equation is (2𝑌𝑚𝐶𝑜𝑠 𝜑 /2).  

• If (𝜑 =  0), the two interfering waves are in phase and is 

= 2Ym sin(kx − ωt) ⇒ 𝐅𝐮𝐥𝐥𝐲 𝐜𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐯𝐞 𝐢𝐧𝐭𝐞𝐫𝐟𝐞𝐫𝐞𝐧𝐜𝐞 
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• If (𝜑 =  𝜋 𝑟𝑎𝑑 (𝑜𝑟 180°)), the interfering waves are out of phase as in figure 6.7. Then cos 𝜑 

becomes cos(𝜋 2⁄ ) = 0, the amplitude of the resultant wave is zero. 

Y = [2Ym cos(
π

2
)] sin (kx − ωt +

π

2
) = 0 ⇒ 𝐅𝐮𝐥𝐥𝐲 𝐝𝐞𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐯𝐞 𝐢𝐧𝐭𝐞𝐫𝐟𝐞𝐫𝐞𝐧𝐜𝐞  

      From these equations we can get that the combination of 

separate waves in the same region of space to produce a resultant wave 

is called interference. For the two pulses shown in figure 6.7a, the 

displacement of the medium is in the positive y direction for both 

pulses, and the resultant wave (created when the pulses overlap) 

exhibits a displacement greater than that of either individual pulse. 

Because the displacements caused by the two pulses are in the same 

direction, we refer to their superposition as constructive 

interference. 

Now consider two pulses traveling in opposite directions on a taut string where one pulse is 

inverted relative to the other, as illustrated in figure 6.7b. In this case, when the pulses begin to overlap, 

the resultant wave is given by but the values of the function 𝑦2 are negative. Again, the two pulses pass 

through each other; however, because the displacements caused by the two pulses are in opposite 

directions, we refer to their superposition as destructive interference.  

6.8 Standing Waves 

If two sinusoidal waves of the same amplitude and wavelength travel in opposite directions along 

a stretched string, their interference with each other produces a standing wave. Standing waves are 

defined as the interference of two identical sinusoidal waves moving in opposite directions produces 

standing waves. To analyze a standing wave, we represent the two combining waves traveling in 

opposite direction of 𝑥 − 𝑎𝑥𝑖𝑠 with the equations: 

𝑌1 = 𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) 

𝑌2 = 𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 + 𝜔𝑡) 

From the principle of superposition, the resultant wave is the 

algebraic sum of the two waves and has displacement  

𝑌 = 𝑌1 + 𝑌2 

= 𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) + 𝑌𝑚 𝑠𝑖𝑛(𝑘𝑥 + 𝜔𝑡) 

We can write the sum of the sines of two angles (𝛼) and (𝛽) as;  

 

Figure 6.8: Standing wave 

pattern. 

Figure 6.7: constructive and 

destructive interference. 
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𝑠𝑖𝑛 𝛼 + 𝑠𝑖𝑛 𝛽 = 2 𝑠𝑖𝑛 [
𝛼 + 𝛽

2
] 𝑐𝑜𝑠 [

𝛼 − 𝛽

2
] 

= 2𝑌𝑚 𝑠𝑖𝑛 [
(𝑘𝑥 − 𝜔𝑡) + (𝑘𝑥 + 𝜔𝑡)

2
] 𝑐𝑜𝑠 [

(𝑘𝑥 − 𝜔𝑡) − (𝑘𝑥 + 𝜔𝑡)

2
] 

∴ 𝒀 = [𝟐𝒀𝒎 𝒔𝒊𝒏(𝒌𝒙)] 𝒄𝒐𝒔(𝝎𝒕)                                                      (6 − 8) 

This equation does not describe a traveling wave, it describes a standing wave at position (𝑥). The quantity 

[2𝑌𝑚 𝑆𝑖𝑛 𝑘𝑥] can be viewed as the amplitude of oscillation of the standing wave that is located at position 

(𝑥). 

To derive the position of nodes and antinodes of standing waves shown as in figure 6.8. in terms of 

wavelength; 

Positions of nodes: 

𝑛𝑜𝑑𝑒𝑠 ⟺ [𝑠𝑖𝑛(𝑘𝑥)] = 0 

[𝑠𝑖𝑛(𝑘𝑥)] = 0 ⟺ 𝑘𝑥 = 𝑛𝜋, 𝑛 = 0, 1, 2, 3, … 

2𝜋

𝜆
𝑥 = 𝑛𝜋,    𝑥 = 𝑛

𝜆

2
 𝑛 = 0, 1, 2, 3, … 

Positions of antinodes:  

𝑎𝑛𝑡𝑖𝑛𝑜𝑑𝑒𝑠 ⟺ [𝑠𝑖𝑛(𝑘𝑥)] = 1 

[𝑠𝑖𝑛(𝑘𝑥)] = 1 ⟺ 𝑘𝑥 = (𝑛 + 1/2)𝜋, 𝑛 = 0, 1, 2, 3, … 

2𝜋

𝜆
𝑥 = (𝑛 + 1/2)𝜋, 𝑛 = 0, 1, 2, 3, … 

𝑥 = (𝑛 +
1

2
)

𝜆

2
                      𝑛 = 0, 1, 2, 3, … 

We note the following important features of the locations of nodes and antinodes: 

• The distance between adjacent antinodes is equal to (𝜆 2⁄ ). 

• The distance between adjacent nodes is equal to (𝜆 2⁄ ). 

• The distance between a node and an adjacent antinode is (𝜆 4⁄ ). 

Wave patterns of the elements of the medium produced at various times by two waves traveling in 

opposite directions are shown in figure 6.9. The (𝑦1) and (𝑦2) curves are the wave patterns for the 

individual traveling waves, and the 𝑦 curves are the wave patterns for the resultant standing wave. At 

(𝑡 =  0) (figure 6.9a), the two traveling waves are in phase, giving a wave pattern in which, each element 

of the medium is experiencing its maximum displacement from equilibrium. One quarter of a period later, 

at (𝑡 =  𝑇/4) (figure 6.9b), the traveling waves have moved one quarter of a wavelength (one to the right 

and the other to the left). At this time, the traveling waves are out of phase, and each element of the medium 

is passing through the equilibrium position in its simple harmonic motion. The result is zero displacement 
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for elements at all values of x, that is, the wave pattern is a straight line. At                        (𝑡 =  𝑇/2) (figure 

6.9c), the traveling waves are again in phase, producing a wave pattern that is inverted relative to the 

(𝑡 =  0) pattern. In the standing wave, the elements of the medium alternate in time between the extremes 

shown in figure 6.9a and c. 

 

 

 

 

 

 

 

 

 

6.9 Standing Wave and Resonance 

 Consider a string is stretched between two clamps. Suppose we send a continuous sinusoidal wave 

of a certain frequency along the string. For certain frequencies (resonant frequencies), the interference 

produces a standing wave pattern (or oscillation mode) with nodes and large antinodes like those in Figure, 

let a string be stretched between two clamps separated by a fixed distance (𝐿). The simplest pattern of 

vibrating string with different modes shows in figure 6.10 and illustrated in table 6-1.  

 

Figure 6.9: Standing-wave patterns produced at various times by two waves of equal 

amplitude traveling in opposite directions. For the resultant wave 𝑦, the nodes (𝑁) are 

points of zero displacement, and the antinodes (𝐴) are points of maximum 

displacement. 

Figure 6.10: A string, stretched between two clamps, is made to oscillate in standing wave patterns. 
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Table 6-1: Standing waves in a stretched string. 

 

 

 

 

 

  

 
Number of loops string 

makes 

The 

wavelength of 

vibration 

The frequency 

of vibration 

First harmonic mode 

Or 

Fundamental mode 

One loop 𝜆1 = 2𝐿 

𝑓1 =
𝑣1

𝜆1

=
1

2𝐿
√

𝜏

𝜇
 

Second harmonic mode 
Two loops 

 

𝜆2 = 𝐿 

 

𝑓2 =
1

𝐿
√

𝜏

𝜇
 

Third harmonic mode 

 

Three loop 

 
𝜆3 =

2

3
𝐿 𝑓3 =

3

2𝐿
√

𝜏

𝜇
 

Generally, for (n) 

harmonic mode 
(n) loop 𝜆𝑛 =

2

𝑛
𝐿 𝑓𝑛 =

𝑛

2𝐿
√

𝜏

𝜇
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PROBLEMS 
 

1. By rocking a boat produces surface water waves on a previously quite lake. He observes that the boat 

performs 𝟏𝟐 oscillations in 𝟐𝟎 𝒔; each oscillation producing a wave's crests 𝟏𝟓 𝒄𝒎 above undisturbed 

surface of the lake. He further observes that a given waves crest reaches shore, 𝟏𝟐 𝒎 away in 𝟔 𝒔. What 

are (a) the period, (b) the speed, (c) the wave length, and (d) the amplitude of this wave? 

2. The equation of a transverse wave traveling in a string is given by: 

𝐲(𝐱, 𝐭) = (𝟐 𝐦𝐦) 𝐬𝐢𝐧((𝟐𝟎 𝐦−𝟏)𝐱 − (𝟔𝟎𝟎 𝐬−𝟏)𝐭) 

    (i) Find the amplitude, frequency, velocity and wavelength of the wave. (ii) Find the maximum 

transverse speed of a particle in the string. 

3. What is the speed of a transverse wave in a rope of length 𝟐 𝒎 and mass 𝟔𝟎 𝒈 under a tension of 𝟓𝟎𝟎 𝑵? 

4. A piano string having a mass per unit length 𝟓 ×  𝟏𝟎−𝟑 𝒌𝒈/𝒎 is under a tension of 𝟏𝟑𝟓𝟎 𝑵. Find the 

speed with which a wave travels on this string. 
5. Transverse pulses travel with a speed of 𝟐𝟎𝟎 𝒎/𝒔 along a taut copper wire whose diameter is 𝟏. 𝟓 𝒎𝒎. 

What is the tension in the wire? (The density of copper is 𝟖. 𝟗𝟐 𝒈/𝒄𝒎𝟑.) 
6. The speed of a wave on a string is 𝟏𝟕𝟎 𝒎/𝒔 when the tension is 𝟏𝟐𝟎 𝑵. To what value must the tension 

be increased in order to raise the wave speed 𝟏𝟖𝟎 𝒎/𝒔? 

7. Power (𝑷𝟏) is transmitted by a wave of frequency (𝒇𝟏) on a string with tension (𝑻𝟏). What is the 

transmitted power (𝑷𝟐) in terms of (𝑷𝟏): (a) if, instead, the tension of the string is increased to (𝑻𝟐)  =

 𝟒𝑻𝟏, and (b) if the frequency is decreased to (𝒇𝟐  =  
𝒇𝟏

𝟐⁄ )? 

8. A string 𝟐. 𝟕 𝒎 long has a mass of 𝟐𝟔𝟎 𝒈. The tension in the string is 𝟑𝟔 𝑵. What must be the frequency 

of traveling waves of amplitude 𝟕. 𝟕 𝒎𝒎 in order to that the average transmitted power is 𝟖𝟓 𝑾? 

9. A taut rope has a mass of 𝟎. 𝟏𝟖 𝒌𝒈 and a length of 𝟑. 𝟔 𝒎. What power must be supplied to the rope to 

generate sinusoidal waves having amplitude of 𝟎. 𝟏 𝒎 and a wavelength of 𝟎. 𝟓 𝒎 and traveling with a 

speed of 𝟑𝟎 𝒎/𝒔? 
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10. A string fixed at both ends is 𝟖. 𝟒 𝒎 long and has a mass of 𝟎. 𝟏𝟐 𝒌𝒈, it is subjected to a tension of 

𝟗𝟔 𝑵 and stets to oscillating. (a) What is the speed of the waves on the string? (b) What is the longest 

possible wavelength for the standing waves? (c) Give the frequency of the wave waves on the string. 

11. A nylon guitar string has a linear density of 𝟕. 𝟐 𝒈/𝒎 and is under a 

tension of 𝟏𝟓𝟎 𝑵. The fixed supports are 𝟗𝟎 𝒄𝒎 apart. The string is 

oscillating in the standing wave pattern as in the corresponding figure. 

Calculate the (a) speed, (b) wavelength, and frequency of the waves whose superposition gives this 

standing wave. 

12. A cello A-string vibrates in its first normal mode with a frequency of 𝟐𝟐𝟎 𝑯𝒛. The vibrating segment 

is 𝟕𝟎 𝒄𝒎 long and has a mass of 𝟏. 𝟐 𝒈. (a) Find the tension in the string. (b) Determine the frequency 

of vibration when the vibrating segment is tripled. 

13. A taut rope has a mass of 𝟎. 𝟏𝟖 𝒌𝒈 and a length of 𝟑. 𝟔 𝒎. What power must be supplied to the rope 

to generate sinusoidal waves having amplitude of 𝟎. 𝟏 𝒎 and a wavelength of 𝟎. 𝟓 𝒎 and traveling 

with a speed of 𝟑𝟎 𝒎/𝒔? 

14. A 𝟏. 𝟓 𝒄𝒎 wire has a mass 𝟖. 𝟕 𝒈 and is held under a tension of 𝟏𝟐𝟎 𝑵. The wire is held rigidly at 

both ends and set into vibration. Calculate  

      (a) The velocity of waves on the wire.  

      (b) The wavelength of the waves that produce one and two loop standing waves on the string. 

      (c) The frequency of the waves that produce one and two loop standing waves. 
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CHAPTER (7) 

SOUND WAVES 
 

7.1 Introduction 

Sound waves are the most important example of longitudinal waves. They can travel through any 

material medium with a speed that depends on the properties of the medium. As the waves travel, the 

particles in the medium vibrate to produce changes in density and pressure along the direction of motion 

of the wave. These changes result in a series of high-pressure and low-pressure regions. If the source of 

the sound waves vibrates sinusoidally, the pressure variations are also sinusoidal. We shall find that the 

mathematical description of sinusoidal sound waves is identical to that of sinusoidal string waves, which 

was discussed in the previous chapter. 

Sound waves are divided into three categories that cover different frequency ranges. 

 (1) Audible waves are waves that lie within the range of sensitivity of the human ear. They can be 

generated in a variety of ways, such as by musical instruments, human vocal cords, and loudspeakers.  

(2) Infrasonic waves are waves having frequencies below the audible range. Elephants can use infrasonic 

waves to communicate with each other, even when separated by many kilometers.  

(3) Ultrasonic waves are waves having frequencies above the audible range. You may have used a “silent” 

whistle to retrieve your dog. The ultrasonic sound it emits is easily heard by dogs, although humans cannot 

detect it at all. Ultrasonic waves are also used in medical imaging. 

7.2 The Speed of Sound 

      The speed of a sound wave in a fluid depends on the fluid’s compressibility and density of medium. 

If the medium is a gas or a liquid and has a bulk modulus (𝐵) and an equilibrium density (𝜌), the speed 

of sound in that medium is 

𝑣 = √
𝐵

𝜌
                                                                              (7 − 1)              

where bulk modulus is defined as the ratio of the change in pressure, (∆𝑃, ) to the resulting fractional 

change in volume, (∆𝑉/𝑉): 

𝐵 = −
∆𝑃

∆𝑉 𝑉⁄
                                                                          (7 − 2)    

(𝐵) is always positive because an increase in pressure (positive (∆𝑃)) results in a decrease in volume. 

Hence, the ratio (∆𝑃/∆𝑉) is always negative. 



Chapter (7)                Sound Waves 

   62 

 

It’s interesting to compare this expression with equation for the speed of transverse waves on a string, 

(𝑣 = √𝜏 𝜇⁄ ). In both cases the wave speed depends on an elastic property of the medium ((𝐵) or (𝜏)) and 

on an inertial property of the medium ((𝜌) or (µ)). In fact, the speed of all mechanical waves follows an 

expression of the general form 

𝑣 = √
𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑖𝑡𝑦

𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑖𝑡𝑦
 

For longitudinal sound waves in a solid rod of material, the speed of sound depends on Young's modulus 

(𝑌) and the density (𝜌) as follows 

𝑣 = √
𝑌

𝜌
                                                                         (7 − 3)        

In general, sound travels faster through solids than liquids and faster through liquids than gases, 

although there are exceptions. 

The speed of sound also depends on the temperature of the medium. For sound traveling through 

air, the relationship between the speed of sound and temperature is 

𝑣 = (331
𝑚

𝑠
) √

𝑇

273 𝐾
                                                          (7 − 4)          

where (331 𝑚/𝑠) is the speed of sound in air at (0 ℃) and (𝑇) is the absolute (𝐾𝑒𝑙𝑣𝑖𝑛) temperature. 

Using this equation, the speed of sound in air at ( )(a typical room temperature) is approximately 

(343 𝑚/𝑠). 

7.3 Traveling Sound Waves Equations   

Traveling sound waves are represented by two opposite simple harmonic equations as shown in 

figure 7.1. 

(i) 1st equation describes the oscillation of displacement of particles  

𝑆 = 𝑆𝑚 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)                                                       (7 − 5)           

where (𝑆𝑚) is the displacement amplitude, (𝑘 = 2𝜋/𝜆), and (𝜔 = 2𝜋𝑓). 

(ii) 2nd equation describes the changes of transmitted pressure in medium which causes the particles 

displacement of medium. 

∆𝑃 = ∆𝑃𝑚 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)                                                     (7 − 6)                        
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where (∆𝑃𝑚) is pressure amplitude. 

 

 

 

 

 

 

 

 

 

Relation between (∆𝑷𝒎) and (𝑺𝒎)  
 

Consider a thin disk-shaped element of gas whose circular cross section is parallel to the piston in 

figure 7.2. This element will undergo changes in position, pressure, and density as a sound wave 

propagates through the gas. From the definition of bulk modulus, the pressure variation in the gas is 

∆𝑃 = −𝐵
∆𝑉

𝑉𝑖
 

The element has a thickness ∆(𝑥) in the horizontal direction and a cross-sectional area (𝐴), so its volume 

is (𝑉𝑖 = A ∆x). The change in volume ∆𝑉 accompanying the pressure change is equal to (𝐴∆𝑠), where 

(∆𝑠) is the difference between the value of 𝑠 at (𝑥 +  ∆𝑥) and the value of (𝑠) at (𝑥). Hence, we can 

express (∆𝑃) as 

∆𝑷 = −𝐵
∆𝑉

𝑉𝑖
= −𝐵

𝐴∆𝑠

𝐴∆𝑥
= −𝐵

∆𝑠

∆𝑥
 

As (∆𝑥) approaches zero, the ratio (∆𝑠/∆𝑥) becomes (
𝜕𝑠

𝜕𝑥
). (The partial derivative indicates that we are 

interested in the variation of (𝑠) with position at a fixed time. Therefore, 

Δ𝑃 = −𝐵
𝜕𝑠

𝜕𝑥
 

If the position function is the simple sinusoidal function given by equation (7-5), we find that 

Δ𝑃 = −𝐵
𝜕

𝜕𝑥
[𝑆𝑚 cos(𝑘𝑥 − 𝜔𝑡)] = 𝐵𝑆𝑚𝑘 sin(𝑘𝑥 − 𝜔𝑡) 

Because the bulk modulus is given by (𝐵 =  𝜌𝑣2) (see equation (7-1)), and we can write  =  𝜔/𝑣 ; 

hence, (∆𝑃) can be expressed as 

Δ𝑃 = 𝜌𝑣2𝑆𝑚 sin(𝑘𝑥 − 𝜔𝑡) = 𝜌𝑣𝜔𝑆𝑚 sin(𝑘𝑥 − 𝜔𝑡) = ∆𝑃𝑚 sin(𝑘𝑥 − 𝜔𝑡)             

∴ ∆𝑃𝑚 = 𝜌𝑣𝜔𝑆𝑚                                                              (7 − 7)       
 

Figure 7.1: Longitudinal sound waves. 
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where the speed of sound wave is (𝑣) = 343 𝑚/𝑠, (𝜌𝑎𝑖𝑟  =  1.21 𝑘𝑔/𝑚3) and (𝜔 =  2𝜋𝑓) depend on 

frequency of sound source). 

Example (7.1): 

The maximum pressure amplitude that the human ear can tolerate in loud sounds is about 𝟐𝟖 𝑷𝒂. What is 

the displacement amplitude 𝑺𝒎 for such a sound in air of density 𝝆 = 𝟏. 𝟐𝟏 𝒌𝒈/𝒎𝟑, at a frequency of 

𝟏𝟎𝟎𝟎 𝑯𝒛 and a speed of 𝟑𝟒𝟑 𝒎/𝒔? 

Solution: 

𝑆𝑚 =
∆𝑃𝑚

𝑣𝜌𝜔
=

∆𝑃𝑚

𝑣𝜌(2𝜋𝑓)
=

(28 𝑃𝑎)

(343 𝑚/𝑠)(1.21 𝑘𝑔/𝑚3)(2𝜋(1000 𝐻𝑧))
= 1.1 × 10−9 𝑚 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.4 Intensity of Sound Waves (I) 

The intensity (𝐼) of a wave is defined as the average rate of energy transmitted (power) per unit 

area, and can be defined as the rate at which the energy being transported by the wave flows through a 

unit area (𝐴) perpendicular to the direction of travel of the wave. 

𝑰 =
𝑷𝒐𝒘𝒆𝒓

𝒂𝒓𝒆𝒂
                           

The intensity (𝐼) at a distance (𝑟) from a point source that emits sound waves of power (𝑃) is given by   

Figure 7.2: A longitudinal wave propagating through a gas filled tube. The source of the 

wave is an oscillating piston at the left. (a) Displacement amplitude and (b) pressure 

amplitude versus position for a sinusoidal longitudinal wave. 

 



Chapter (7)                Sound Waves 

   65 

 

𝐼 =
𝑃

𝐴𝑠𝑝ℎ𝑒𝑟𝑒
=

𝑃

4𝜋𝑟2
 

where (𝑃) is the sound power passing through the surface, measured in watts, and the intensity again has 

units of watts per square meter. 
The intensity (𝐼) is related to the displacement amplitude (𝑆𝑚) of the sound wave by 

𝐼 =
1

2
𝜌𝑣𝜔2𝑆𝑚

2 =
∆𝑃𝑚𝑎𝑥

2

2𝜌𝑣
                                                         (7 − 8)         

Thus, we see that the intensity of a periodic sound wave is proportional to the square of the displacement 

amplitude and to the square of the angular frequency (as in the case of a periodic string wave). This can 

also be written in terms of the pressure amplitude (∆𝑃𝑚𝑎𝑥) 

𝐼 =
∆𝑃𝑚𝑎𝑥

2

2𝜌𝑣
                                                                        (7 − 9)                        

7.5 Sound Level 

The human ear can detect a wide range of intensities. Because this range is so wide, it is convenient 

to use a logarithmic scale, where the sound level (𝛽) (Greek beta) is defined by the equation 

𝛽 = (10 𝑑𝐵)lo g (
𝐼

𝐼𝑜
)                                                       (7 − 10)          

where the constant (𝐼𝑜) is the reference intensity, taken to be at the threshold of hearing                                     

(𝐼𝑜 =  1 × 10−12 𝑊/𝑚2), and 𝐼 is the intensity in watts per square meter to which the sound level (𝛽) 

corresponds, where (𝛽) is measured in decibels (𝑑𝐵). Table 7-1 gives some typical sound levels. 

Table 7-1: Sound levels 
 

Sources of Sounds β  (dB) 

Nearby jet airplane 150 

Jackhammer; machine gun 130 

Siren; rock concert 120 

Subway; power mower 100 

Busy traffic 80 

Vacuum cleaner 70 

Normal conversation 50 

Mosquito buzzing 40 

Whisper 30 

Rustling leaves 10 

Threshold of hearing 0 

 

Example (7.2):  

A point source emits sound waves with an average power output of 𝟖𝟎 𝑾. (a) Find the intensity 𝟑 𝒎 from 

the source. (𝐵) Find the distance at which the intensity of the sound is 𝟏 × 𝟏𝟎−𝟖 𝑾/𝒎𝟐. 
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Solution: 

(𝑎)  𝐼 =
𝑃

𝐴
=

𝑃

4𝜋𝑟2
=

(80 𝑊)

4𝜋(3 𝑚)2
= 0.707 𝑊/𝑚2 

(𝑏)  𝑟 = √
𝑃

4𝜋𝐼
= √

(80 𝑊)

4𝜋(1 × 10−8 𝑊/𝑚2)
 

Example (7.3): 

Two identical machines are positioned the same distance from a worker. The intensity of sound delivered 

by each machine at the location of the worker is 𝟐 × 𝟏𝟎−𝟕 𝑾/𝒎𝟐. Find the sound level heard by the 

worker (a) when one machine is operating and (b) when both machines are operating. 

Solution: 

(a) The sound level at the location of the worker with one machine operating 

𝛽 = (10 𝑑𝐵)𝑙𝑜𝑔
𝐼

𝐼𝑜
= (10 𝑑𝐵)𝑙𝑜𝑔

(2 × 10−12 𝑊/𝑚2)

(1 × 10−12 𝑊/𝑚2)
= 53 𝑑𝐵 

(b) When both machines are operating, the intensity is doubled to 4 ×  10−7 𝑊/𝑚2; therefore, the sound 

level now is 

𝛽 = (10 𝑑𝐵)𝑙𝑜𝑔
𝐼

𝐼𝑜
= (10 𝑑𝐵)𝑙𝑜𝑔

(4 × 10−12 𝑊/𝑚2)

(1 × 10−12 𝑊/𝑚2)
= 56 𝑑𝐵 

From these results, we see that when the intensity is doubled, the sound level increases by only 3 𝑑𝐵. 

7.6 Sources of Musical Sound 

Standing waves can be set up in a tube of air, such as that inside an organ pipe, as the result of 

interference between longitudinal sound waves traveling in opposite directions. The phase relationship 

between the incident wave and the wave reflected from one end of the pipe depends on whether that end 

is open or closed. This relationship is analogous to the phase relationships between incident and reflected 

transverse waves at the end of a string when the end is either fixed or free to move. 

As shown in figure 7.3. a pipe open at both ends, the natural frequencies of oscillation form a 

harmonic series that includes all integral multiples of the fundamental frequency. Because all harmonics 

are present, and because the fundamental frequency is given by the same expression as that for a string, 

we can express the natural frequencies of oscillation as 

𝑓𝑛 =  
𝑛𝑣

2𝐿
        𝑛 = 1, 2, 53, … 

where (𝑣) is the sound speed in air and (𝐿) is the length of the pipe. 
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In a pipe closed at one end, the natural frequencies of oscillation form a harmonic series that 

includes only odd integral multiples of the fundamental frequency. Because all harmonics are present, and 

because the fundamental frequency is given by the same expression as that for a string, we can express the 

natural frequencies of oscillation as 

𝑓𝑛 =  
𝑛𝑣

4𝐿
        𝑛 = 1, 3, 5, …           

where,  (𝑣) is the sound speed in air and (𝐿) is the length of the pipe. 

Musical instruments based on air columns are generally excited by resonance. The air column is 

presented with a sound wave that is rich in many frequencies. The air column then responds with a large-

amplitude oscillation to the frequencies that match the quantized frequencies in its set of harmonics. In 

many woodwind instruments, the initial rich sound is provided by a vibrating reed. In the brasses, this 

excitation is provided by the sound coming from the vibration of the player’s lips. In a flute, the initial 

excitation comes from blowing over an edge at the mouthpiece of the instrument. This is similar to blowing 

across the opening of a bottle with a narrow neck. The sound of the air rushing across the edge has many 

frequencies, including one that sets the air cavity in the bottle into resonance. 

 
 

 

7.7 The Doppler Effect 

If a car or truck is moving while its horn is blowing, the frequency of the sound you hear is higher 

as the vehicle approaches you and lower as it moves away from you. This phenomenon is one example of 

Figure 7.3: Standing waves in air columns. 
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the Doppler effect, named for Austrian physicist Christian Doppler (1803–1853), who discovered it. The 

same effect is heard if you’re on a motorcycle and the horn is stationary: the frequency is higher as you 

approach the source and lower as you move away. Although the Doppler effect is most often associated 

with sound, it’s common to all waves, including light. In deriving the Doppler effect, we assume the air is 

stationary and that all speed measurements are made relative to this stationary medium. The speed (𝑣𝑜) is 

the speed of the observer, (𝑣𝑠) is the speed of the source, and (𝑣) is the speed of sound as shown in figure 

7.5. 

• Case 1: The Observer Is Moving Relative to a Stationary Source:  

An observer is moving with a speed of (𝑣𝑜) toward the source (considered a point source) as shown in 

figure 7.4, which is at rest (𝑣𝑠  =  0), we can get  

(i) Detector move away from source;  

𝑓́ = 𝑓
𝑣 − 𝑣𝑜

𝑣
 

(ii) Detector move toward the source;  

𝑓́ = 𝑓
𝑣 + 𝑣𝑜

𝑣
 

where (𝑓́) is the beat frequency which is the difference between two combined frequencies and (𝑓) is the 

source frequency. 

• Case 2: The source is moving relative to a stationary observer: 

A source is moving toward an observer at rest (𝑣𝑜  =  0) as shown in figure 7.5., We obtained: 

(i) Source move away from detector;  

𝑓́ = 𝑓
𝑣

𝑣 + 𝑣𝑠
 

(ii) Source move toward the detector;  

𝑓́ = 𝑓
𝑣

𝑣 − 𝑣𝑠
 

• General Case: When both the source and the observer are in motion relative to Earth, we 

obtained: 

𝑓́ = 𝑓
𝑣 ± 𝑣𝑜

𝑣 ∓ 𝑣𝑠
 

the signs are chosen such that (𝑓)́ , tends to be greater for relative motion toward (one of the objects moves 

toward the other) and less for motion away.  

Choosing incorrect signs is the most common mistake made in working a Doppler effect problem. 

The following rules may be helpful: The word toward is associated with an increase in the observed 

frequency; the words away from are associated with a decrease in the observed frequency. 
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Although the Doppler effect is most typically 

experienced with sound waves, it is a phenomenon that 

is common to all waves. For example, the relative 

motion of source and observer produces a frequency 

shift in light waves. The Doppler effect is used in police 

radar systems to measure the speeds of motor vehicles. 

Likewise, astronomers use the effect to determine the 

speeds of stars, galaxies, and other celestial objects 

relative to the Earth. 

 

 

 

Example (7.4): 

As an ambulance travels east down a highway at a speed of 𝟑𝟑. 𝟓 𝒎/𝒔, its siren emits sound at a frequency 

of 𝟒𝟎𝟎 𝑯𝒛. What frequency is heard by a person 

in a car traveling west at 𝟐𝟒. 𝟔 𝒎/𝒔 (a) as the car 

approaches the ambulance and (b) as the car moves 

away from the ambulance? 

Solution: 

(a) From the general case equation, taking the 

speed of sound in air to be 343 m/s. As the 

ambulance and car approach each other, the person 

in the car hears the frequency 

𝑓̀ = 𝑓
𝑣 + 𝑣𝑜

𝑣 − 𝑣𝑠
= (400 Hz) (

343 m/s + 24.6 m/s

343 m/s − 33.5 m/s
) = 475 Hz 

 (b) As the vehicles recede from each other, the person hears the frequency 

𝑓̀ = 𝑓
𝑣 − 𝑣𝑜

𝑣 + 𝑣𝑠
= (400 Hz) (

343 m/s − 24.6 m/s

343 m/s + 33.5 m/s
) = 338 Hz 

 

7.7.1 Applications on Doppler effect 

 

I) Subjective tones 

When two single-frequency tones are present in the air at the same time, they will interfere with each 

other and produce a beat frequency. The beat frequency is equal to the difference between the frequencies 

Figure 7.5: A source (𝑆) moving with speed 

(𝑣𝑠) toward a stationary observer (𝐴) and away 

from a stationary observer (𝐵). Observer (𝐴) 

hears an increased frequency, and observer (𝐵) 

hears a decreased frequency. 

 

Figure 7.4: An observer (𝑂) (the cyclist) moves with a 

speed (𝑣𝑜) toward a stationary point source (𝑆), the horn 

of a parked truck. The observer hears a frequency (𝑓́) that 

is greater than the source frequency. 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/sound/beat.html#c1
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of the two tones and if it is in the mid-frequency region, the human ear will perceive it as a third tone, 

called a "subjective tone" or "difference tone". 

 

 

 

 

 

 

II) Police RADAR 

 

RADAR speed detectors reflected waves from moving cars. These waves are shifted in frequency by 

the Doppler Effect, and the frequency between the directed and reflected waves provides a measure of the 

car speed. 

 

 

 

 

 

 

 

 

III) Doppler Pulse Detection 

The Doppler Effect in an ultrasonic pulse probe detects the reflected sound from moving blood. The 

frequency of the reflected sound is different, and the beat frequency between the direct and reflected 

sounds can be amplified and used in earphones to hear the pulse sound. 

 

 

 

 

 

 

 

 

 

 

 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/sound/radar.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/dopp.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/usound.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/beat.html#c1
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7.8 Shock Waves 

What happens when the source speed (𝑣𝑠) exceeds the wave velocity (𝑣)? Figure 7.5. describes 

this situation graphically. The circles represent spherical wave fronts emitted by the source at various times 

during its motion. At (𝑡 = 0), the source is at point (𝑆𝑜), and at some later time 𝑡, the source is at point 

(𝑆𝑛). In the interval (𝑡), the wave front centered at (𝑆𝑜) reaches a radius of (𝑣𝑡). In this same interval, the 

source travels to (𝑆) a distance of (𝑣𝑠𝑡). At the instant the source is at (𝑆𝑛), the waves just beginning to 

be generated at this point have wave fronts of zero radius. The 

line drawn from (𝑆𝑛)  to the wave front centered on (𝑆𝑜) is 

tangent to all other wave fronts generated at intermediate times. 

All such tangent lines lie on the surface of a cone. The angle (𝜃) 

between one of these tangent lines and the direction of travel is 

given by 

sin 𝜃  =  𝑣/𝑣𝑠   

The ratio (𝑣𝑠/𝑣) is called the Mach number. The conical wave 

front produced when 𝑣𝑠 >  𝑣 (supersonic speeds) is known as a 

shock wave. 

     

Jet aircraft and space shuttles traveling at supersonic 

speeds produce shock waves that are responsible for the loud 

explosion, or sonic boom, heard on the ground. A shock wave 

carries a great deal of energy concentrated on the surface of the 

cone, with correspondingly great pressure variations. Shock 

waves are unpleasant to hear and can damage buildings when aircraft fly supersonically at low altitudes. 

In fact, an airplane flying at supersonic speeds produces a double boom because two shock waves are 

formed: one from the nose of the plane and one from the tail. 

 

 

 

 

 

 

Figure 7.6: (a) A representation of a 

shock wave produced when a source 

moves from (𝑆𝑜) to (𝑆𝑛) with a speed 
(𝑣𝑠), which is greater than the wave 

speed (𝑣) in the medium. The 

envelope of the wave fronts forms a 

cone whose apex half-angle is given 

by (sin 𝜃  =  𝑣/𝑣𝑠). 
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PROBLEMS 

1. Find the speed of sound in mercury, which has a bulk modulus of approximately  𝟐. 𝟖 𝒙 𝟏𝟎𝟏𝟎 𝑵/𝒎𝟐 and 

a density of 𝟏𝟑𝟔𝟎𝟎 𝒌𝒈/𝒎𝟑. 

2. You are at a large outdoor concert seated 𝟑𝟎𝟎 𝒎 from the speaker system. The concert is also being 

broadcast live via satellite. Consider a listener 𝟓𝟎𝟎𝟎 𝒌𝒎 away. Who hears the music first, you or the 

listener, and by what time difference? 

3. As a certain sound wave travels through the air, it produces pressure variations (above and below 

atmospheric pressure) given by ∆𝑷 =  𝟏. 𝟐𝟕 𝒔𝒊𝒏 (𝝅𝒙 −  𝟑𝟒𝟎𝝅𝒕) in SI units. Find (a) the amplitude 

of the pressure variations, (b) the frequency, (c) the wavelength in air, and (d) the speed of the sound 

wave. 

4. The maximum pressure variation that the ear tolerates in loud sounds is about 𝟐𝟖 𝑷𝒂. What is the 

displacement amplitude for such a sound in air of density 𝟏. 𝟐𝟏 𝑲𝒈/𝒎𝟑, at a frequency of 𝟏𝟎𝟎𝟎 𝑯𝒛? 

5. A certain loudspeaker produces a sound with frequency 𝟐𝟎𝟎𝟎 𝑯𝒛 and an intensity of 𝟎. 𝟗𝟔 𝑾/𝒎𝟐 at a 

distance of 𝟔. 𝟏 𝒎. Assume that there is no reflection and that the loudspeaker emits the power in all 

direction. (a) What is intensity at 𝟑𝟎 𝒎? (b) What is the displacement amplitude at 𝟔. 𝟏 𝒎? (c) What is 

the pressure amplitude at 𝟔. 𝟏 𝒎? where 𝝆𝒂𝒊𝒓 = 𝟏. 𝟐𝟏 𝑲𝒈/𝒎𝟑. 

6. The source of a sound wave has a power of 𝟏 𝒑𝑾. If it is a point source. (a) What is the intensity at 

𝟑 𝒎 away? (b)What is the sound level in decibels at that distance?   

7. A vacuum cleaner produces sound with a measured sound level of 𝟕𝟎 𝒅𝑩. (a) What is the intensity of 

this sound in 𝑾/𝒎𝟐? (b) What is the pressure amplitude of the sound? 

8. The intensity of a sound wave at a fixed distance from a speaker vibrating at 𝟏 𝒌𝑯𝒛 is 𝟎. 𝟔 𝑾/𝒎𝟐.      

(a) Determine the intensity if the frequency is increased to 𝟐. 𝟓 𝒌𝑯𝒛 while a constant displacement 

amplitude is maintained. (b) Calculate the intensity if the frequency is reduced to 𝟎. 𝟓 𝒌𝑯𝒛 and the 

displacement amplitude is doubled. 

9. A sound wave of frequency 𝟏𝟎𝟎𝟎 𝑯𝒛 propagating through air has pressure amplitude 𝟏𝟎 𝑷𝒂. What are: 

(a) Wavelength (b) particle displacement amplitude (c) An organ pipe open at both ends has this 

frequency as fundamental. How long is the pipe? Density of air 𝟏. 𝟐 𝒌𝒈/ 𝒎𝟑. 
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10. (a) Find the speed of waves on an 𝟖𝟎𝟎 𝒎𝒈 violin string 𝟐𝟐 𝒄𝒎 long if the fundamental frequency is 

𝟗𝟐𝟎 𝑯𝒛 (b) What is the tension in the string for the fundamental (c) What is the wavelength of the 

waves on the string and (d) The sound waves emitted by the string? 
 

11. A pipe open at both ends has a fundamental frequency of 𝟑𝟎𝟎 𝑯𝒛. (a) What is the length of the pipe? 

(b) What is the fundamental frequency? 

12. Calculate the length of a pipe that has a fundamental frequency of 𝟐𝟒𝟎 𝑯𝒛 if the pipe is (a) closed at 

one end and (b) open at both ends. 

13. Two identical tuning forks can oscillate at 𝟒𝟒𝟎 𝑯𝒛. A person is located somewhere on the line between 

them. Calculate the beat frequency as measured by this individual if (a) she is standing still and the 

tuning forks both move to the right, say at 𝟑𝟎 𝒎/𝒔 and (b) the tuning forks are stationary and the 

listener moves to the right at 𝟑 𝒎/𝒔? 

14. Acoustic burglar alarm consists of a source emitting waves of frequency 𝟐𝟖 𝒌𝑯𝒛. What will the beat 

frequency of the waves reflected from an intruder walking at an average speed of 𝟎. 𝟗𝟓 𝒎/𝒔 directly 

away from the alarm? 

15. An airplane traveling at half the speed of sound (𝒗 =  𝟏𝟕𝟐 𝒎/𝒔) emits a sound of frequency 𝟓 𝒌𝑯𝒛. 

At what frequency does a stationary listener hear the sound (a) as the plane approaches? (b) After it 

passes? 
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CHAPTER (8) 
TEMPERATURE AND THERMODYNAMICS 

8.1 Introduction   

 Thermodynamics is the study which involves situations in which the temperature or state (solid, 

liquid, gas) of a system changes due to energy transfers. Thermodynamics is very successful in explaining 

the bulk properties of matter and the correlation between these properties and the mechanics of atoms and 

molecules.  

      Thermodynamics also addresses more practical questions. Have you ever wondered how a 

refrigerator is able to cool its contents, or what types of transformations occur in a power plant or in the 

engine of your automobile, or what happens to the kinetic energy of a moving object when the object 

comes to rest? The laws of thermodynamics can be used to provide explanations for these and other 

phenomena. 

      Description of thermal phenomena requires definitions of such important terms as temperature, 

heat, and internal energy. So this chapter begins with a discussion of temperature. 

8.2 Temperature  

 Temperature is one of the seven SI basic quantities. Physicists measure temperature on the Kelvin 

scale, which is marked in units called kelvins. Although the temperature of a body apparently has no upper 

limit, it does have a lower limit; this limiting low temperature is taken as the zero of the Kelvin temperature 

scale. Room temperature is about 290 𝑘𝑒𝑙𝑣𝑖𝑛𝑠, or 290 𝐾 as we write it, above this absolute zero. 

 The concept of temperature often associates with how hot or cold an object feels when we touch 

it. In this way, our senses provide us with a qualitative indication of temperature. Our senses, however, 

are unreliable and often mislead us. Your skin “measures” the rate of energy transfers by heat rather than 

the actual temperature. What we need is a reliable and reproducible method for measuring the relative 

hotness or coldness of objects rather than the rate of energy transfer. Scientists have developed a variety 

of thermometers for making such quantitative measurements. 

 To understand the concept of temperature, it is useful to define two often used phrases: thermal 

contact and thermal equilibrium. To grasp the meaning of thermal contact, let us imagine that two objects 

are placed in an insulated container such that they interact with each other but not with the rest of the 

world. If the objects are at different temperatures, energy is exchanged between them, even if they are 

initially not in physical contact with each other. We always assume that two objects are in thermal contact 
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with each other if energy can be exchanged between them. Thermal equilibrium is a situation in which two 

objects in thermal contact with each other cease to exchange energy by the process of heat. 

8.3 The Zeroth Law of Thermodynamics 

 Let us consider two objects (𝐴) and (𝐵), which are not in thermal contact, and a third object (𝐶), 

which is our thermometer. We wish to determine whether (𝐴) and (𝐵) are in thermal equilibrium with 

each other. The thermometer (object 𝐶) is first placed in thermal contact with object (𝐴) until thermal 

equilibrium is reached. From that moment on, the thermometer’s reading remains constant, and we record 

this reading. The thermometer is then removed from object (𝐴) and placed in thermal contact with object 

(𝐵). The reading is again recorded after thermal equilibrium is reached. If the two readings are the same, 

then object (𝐴) and object (𝐵) are in thermal equilibrium with each other. We can summarize these results 

in a statement known as the zeroth law of thermodynamics (the law of equilibrium), which states that: “If 

objects (𝐴) and (𝐵) are separately in thermal equilibrium with a third object (𝐶), then (𝐴) and (𝐵) are 

in thermal equilibrium with each other”. 

This statement can easily be proved experimentally and is very important because it enables us to 

define temperature. We can think of temperature as the property that determines whether an object is in 

thermal equilibrium with other objects. Two objects in thermal equilibrium with each other are at the same 

temperature. Conversely, if two objects have different temperatures, then they are not in thermal 

equilibrium with each other.   

8.4 Thermometers  

Thermometers are devices used to measure the temperature of a system. All thermometers are 

based on the principle that some physical property of a system changes as the system’s temperature 

changes. Some physical properties that change with temperature are (1) the volume of a liquid, (2) the 

dimensions of a solid, (3) the pressure of a gas at constant volume, (4) the volume of a gas at constant 

pressure, (5) the electric resistance of a conductor, and (6) the color of an object.  

A common thermometer in everyday use consists of a mass of liquid usually mercury or alcohol 

that expands into a glass capillary tube when heated. In this case, the physical property that changes is the 

volume of a liquid. Any temperature change in the range of the thermometer can be defined as being 

proportional to the change in length of the liquid column. The thermometer can be calibrated by placing it 

in thermal contact with a natural system that remains at constant temperature. One such system is a mixture 

of water and ice in thermal equilibrium at atmospheric pressure. On the Celsius temperature scale, this 

mixture is defined to have a temperature of zero degrees Celsius, which is written as 0 ℃ this temperature 
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is called the ice point of water. Another commonly used system is a mixture of water and steam in thermal 

equilibrium at atmospheric pressure; its temperature is defined as 100 ℃, which is the steam point of 

water.  

      Once the liquid levels in the thermometer have been established at these two points, the length of 

the liquid column between the two points is divided into 100 equal segments to create the Celsius scale. 

Therefore, each segment denotes a change in temperature of one Celsius degree. A practical problem of 

any thermometer is the limited range of temperatures over which it can be used. A mercury thermometer, 

for example, cannot be used below the freezing point of mercury, which is 239 ℃ and an alcohol 

thermometer is not useful for measuring temperatures above 85 ℃ the boiling point of alcohol. To 

surmount this problem, we need a universal thermometer whose readings are independent of the substance 

used in it. The gas thermometer, discussed in the next section, approaches this requirement. 

8.5 The Constant-Volume Gas Thermometer 

      The temperature readings given by a gas thermometer are nearly independent of the substance used 

in the thermometer. One version of a gas thermometer is the constant-volume apparatus shown in figure 

8.1. The physical change exploited in this device is the variation of pressure of a fixed volume of gas with 

temperature. The flask is immersed in an ice-water bath, and mercury reservoir (𝐵) is raised or lowered 

until the top of the mercury in column (𝐴) is at the zero point on the scale. The height (ℎ), the difference 

between the mercury levels in reservoir B and column A, indicates the pressure in the flask at (0 ℃) by 

means of equation, 

𝑃 =  𝑃𝑜  +  𝜌𝑔ℎ 

The flask is then immersed in water at the steam point. Reservoir (𝐵) is readjusted until the top of 

the mercury in column (𝐴) is again at zero on the scale, which ensures that the gas’s volume is the same 

as it was when the flask was in the ice bath. This adjustment of reservoir (𝐵) gives a value for the gas 

pressure at 100 ℃. These two pressure and temperature values are then plotted as shown in figure 8.2. The 

line connecting the two points serves as a calibration curve for unknown temperatures. To measure the 

temperature of a substance, the gas flask of figure 8.1 is placed in thermal contact with the substance and 

the height of reservoir (𝐵) is adjusted until the top of the mercury column in (𝐴) is at zero on the scale. 

The height of the mercury column in (𝐵) indicates the pressure of the gas; knowing the pressure, the 

temperature of the substance is found using the graph in figure 8.2.        

Now suppose temperatures of different gases at different initial pressures are measured with gas 

thermometers. Experiments show that the thermometer readings are nearly independent of the type of gas 
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used as long as the gas pressure is low and the temperature is well above the point at which the gas liquefies 

(figure 8.4). The agreement among thermometers using various gases improves as the pressure is reduced. 

 

 

 

 

 

 

 

8.6 The Absolute Temperature Scale  

      In figure 8.3 if we extend the straight lines toward negative temperatures, we find a remarkable 

result: in every case, the pressure is zero when the temperature is −273.15 ℃ This finding suggests some 

special role that this temperature used as the basis for the absolute temperature scale, which sets 

−273.15 ℃ as its zero point. This temperature is often referred to as absolute zero. Therefore, the 

conversion between these temperatures is    

𝑇𝑐  =  𝑇 −  273.15                                                            (8 − 1) 

where (𝑇𝑐) is the Celsius temperature and (𝑇) is the absolute temperature.  

An absolute temperature scale based on two new fixed points was adopted in 1954 by the 

International Committee on Weights and Measures. The first point is absolute zero. The second reference 

temperature for this new scale was chosen as the triple point of water, which is the single combination of 

temperature and pressure at which liquid water, gaseous water, and ice (solid water) coexist in equilibrium. 

This triple point occurs at a temperature of (0.01 ℃) or (273.16 𝐾) and a pressure of (4.58 𝑚𝑚) of 

mercury. This choice was made so that the old absolute temperature scale based on the ice and steam 

points would agree closely with the new scale based on the triple point. This new absolute temperature 

scale (also called the Kelvin scale) employs the SI unit of absolute temperature, the kelvin, which is 

defined to be (1/273.16) of the difference between absolute zero and the temperature of the triple point 

of water. Figure 8.4 gives the absolute temperature for various physical processes and structures.  

Figure 8.1: A constant-volume gas 

thermometer measures the pressure of 

the gas contained in the flask immersed 

Figure 8.2: A typical graph of pressure 

versus temperature taken with a 

constant-volume gas thermometer 
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Figure 8.3: Pressure versus temperature for 

experimental trials in which gases have different 

pressures in a constant-volume gas thermometer.         

 

 

 

 

 

 

 

 

 

Figure 8.4: Absolute temperatures at which various 

physical processes occur. 

8.7 The Celsius, Fahrenheit, Rankine and Kelvin Temperature Scales 

      The Celsius temperature (𝑇𝑐) is shifted from the absolute (Kelvin) temperature T by (273.15 ℃) 

(table 8-1). Because the size of one degree is the same on the two scales, a temperature difference of 

(5 ℃) is equal to a temperature difference of (5 𝐾).  

      A common temperature scale in everyday use in the United States is the Fahrenheit scale. This 

scale sets the temperature of the ice point at (32 ℉) and the temperature of the steam point at (212 ℉) . 

Rankine, it may be used in engineering systems where heat computations are done using degrees 

Fahrenheit. 

We can use tables 8-1 and 8-2 to find a relationship between changes in temperature on the Celsius, 

Kelvin, Rankine and Fahrenheit scales: 

Table 8-1: Temperature conversions (Celsius) 

 from Celsius  to Celsius  

Fahrenheit  [°𝐹] =  
9

5
[°𝐶] +  32 [°𝐶] =  

5

9
([°𝐹] −  32) 

Kelvin  [𝐾] =  [°𝐶] +  273.15 [°𝐶] =  [𝐾] −  273.15 

Rankine  [°𝑅] =  
9

5
([°𝐶] +  273.15) [°𝐶] =  

5

9
([°𝑅] −  491.67) 

 

https://en.wikipedia.org/wiki/Celsius
https://en.wikipedia.org/wiki/Celsius
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Table 8-2: Temperature conversions (Kelvin) 

 from Kelvin  to Kelvin  

Celsius  [°𝐶] =  [𝐾] −  273.15 [𝐾] =  [°𝐶] +  273.15 

Fahrenheit  [°F] =  
9

5
[K]  −  459.67 [K] =

5

9
([°F] +  459.67) 

Rankine  [°R] =  
9

5
[K] [𝐾] =  

5

9
[°𝑅]   

Example 8.1   

      On a day when the temperature reaches 𝟓𝟎 °𝑭 , what is the temperature in degrees Celsius and in 

kelvins? 

Solution: 

Substitute the given temperature from tables 8-1 & 8-2:     

    𝑇𝐶 =
5

9
(𝑇𝐹 − 32) =

5

9
(50 − 32) = 10 °C  

𝑇 =  𝑇𝐶  +  273.15 =   10 °C +  273.15 =  283 𝐾 

        A convenient set of weather-related temperature equivalents to keep in mind is that (0 ℃)  is 

(literally) freezing at (32 °𝐹), (10 ℃)  is cool at (50 °𝐹), (20 ℃) is room temperature, (30 ℃)  is warm 

at (56 °𝐹), and (40 ℃)  is a hot day at (104 °𝐹). 

8.8 Thermal Expansion of Solids and Liquids 

      Thermal expansion is a consequence of the change in the average separation between the atoms in 

an object. To understand this, imagine that the atoms are connected by stiff springs, as shown in figure 

8.5. At ordinary temperatures, the atoms in a solid oscillate about their equilibrium positions with an 

amplitude of approximately (10−11 𝑚) and a frequency of approximately (1013 𝐻𝑧). The average spacing 

between the atoms is about   (10−10 𝑚). As the temperature of the solid increases, the atoms oscillate with 

greater amplitudes; as a result, the average separation between them increases. Consequently, the object 

expands.  

         

 

 

https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Kelvin
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Suppose an object has an initial length (𝐿𝑖) along some direction at some temperature and the 

length increases by an amount (𝛥𝐿) for a change in temperature (𝛥𝑇). Because it is convenient to consider 

the fractional change in length per degree of temperature change, we define the average coefficient of 

linear expansion as    𝛼 = ∆𝐿 𝐿⁄

∆𝑇
 

Experiments show that 𝛼 is constant for small changes in temperature. For purposes of calculation, 

this equation is usually rewritten as 

              ∆𝐿 = 𝛼𝐿𝑖∆𝑇                                                                   (8 − 2)                                                                          

or as  

        (𝐿𝑓 − 𝐿𝑖) = 𝛼𝐿𝑖(𝑇𝑓 − 𝑇𝑖)                                                    (8 − 3)                                                         

where, (𝐿𝑓) is the final length, (𝑇𝑖) and (𝑇𝑓) are the initial and final temperatures, respectively, and the 

proportionality constant 𝛼 is the average coefficient of linear expansion for a given material and has units 

of (0 ℃)−1. Equation (8-2) can be used for both thermal expansion, when the temperature of the material 

increases, and thermal contraction, when its temperature decreases.  

It may be helpful to think of thermal expansion as an effective magnification or as a photographic 

enlargement of an object. For example, as a metal washer is heated (figure 8.6), all dimensions, including 

the radius of the hole, increase according to equation (8-2). A cavity in a piece of material expands in the 

same way as if the cavity were filled with the material. Table 8-3 lists the average coefficients of linear 

expansion for various materials. For these materials, 𝛼 is positive, indicating an increase in length with 

increasing temperature. Because the linear dimensions of an object change with temperature, it follows 

that surface area and volume change as well. The change in volume is proportional to the initial volume 

𝑉𝑖 and to the change in temperature according to the relationship 

       𝛥𝑉 =  𝛽𝑉𝑖 𝛥𝑇                                                                      (8 − 4) 

where (𝛽) is the average coefficient of volume expansion. To find the relationship between (𝑏) and (𝑎), 

assume the average coefficient of linear expansion of the solid is the same in all directions; that is, assume 

the material is isotropic. Consider a solid box of dimensions (𝑙), (𝑤), and (ℎ). Its volume at some 

Figure 8.5: A mechanical model of the atomic configuration in a substance. The atoms (spheres) are 

imagined to be attached to each other by springs that reflect the elastic nature of the interatomic forces. 
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temperature (𝑇𝑖) is (𝑉𝑖 =  𝑙𝑤ℎ). If the temperature changes to (𝑇𝑖 +  𝛥𝑇), its volume changes to 

(𝑉𝑖  +  𝛥𝑉), where each dimension changes according to equation (8-2). Therefore, 

∆𝑉𝑖 + ∆𝑉 = (𝑙 + ∆𝑙)(𝑤 + ∆𝑤)(ℎ + ∆ℎ) 

                              = (𝑙+∝ 𝑙∆𝑇)(𝑤+∝ 𝑤∆𝑇)(ℎ+∝ ℎ∆𝑇) 

= 𝑙𝑤ℎ(1+∝ ∆𝑇)3 

                                = [1 + 3 ∝ ∆𝑇 + 3(∝ ∆𝑇)2 + (∝ ∆𝑇)3]                                                     

Dividing both sides by (𝑉𝑖) and isolating the term (𝛥𝑉/𝑉𝑖), we obtain the fractional change in volume: 

∆𝑉

𝑉𝑡
= 3αΔT +  3(αΔT)2 + (αΔT)3 

Because αΔT << 1  for typical values of ΔT(<  ~ 100 ℃) , we can neglect the terms 3(αΔT)2  and 

(αΔT)3.  Upon making this approximation, we see that 

∆𝑉

𝑉𝑡
= 3αΔT  →   ∆V = (3α)𝑉𝑡∆T       

Comparing this expression to equation (8-4) shows that 

β = 3α 

In a similar way, you can show that the change in area of a rectangular plate is given by ∆A = 2α𝐴𝑖∆𝑇. 

𝛾 = 2𝛼 

Table 8-3: Average Expansion Coefficients for Some Materials Near Room Temperature 

Material 

(Solids) 

Average Linear 

Expansion Coefficient 

(α)(°C)-1 

Material 

(Liquids and 

Gases) 

Average Volume 

Expansion Coefficient 

(β)(°C)-1 

Aluminum 24  x 10-6 Acetone 1.5 x 10-4 

Brass and bronze 19  x 10-6 Alcohol ethyl 1.12 x 10-4 

Concrete 12  x 10-6 Benzene 1.24 x 10-4 

Copper 17  x 10-6 Gasoline 9.6 x 10-4 

Glass (ordinary) 9    x 10-6 Glycerin 4.85 x 10-4 

Glass (Pyrex) 3.2 x 10-6 Mercury 1.82 x 10-4 

Invar (Ni–Fe alloy) 0.9 x 10-6 Turpentine 9.0 x 10-4 

Lead 29  x 10-6 Air at 0 oC 3.67 x 10-3 

Steel 11  x 10-6 Helium 3.665 x 10-3 
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A simple mechanism called a bimetallic strip, found in practical devices such as thermostats, uses 

the difference in coefficients of expansion for different materials. It consists of two thin strips of dissimilar 

metals bonded together. As the temperature of the strip increases, the two metals expand by different 

amounts and the strip bends as shown in figure 8.7 

8.9 Thermal Stress  

Thermal stress is created by thermal expansion or contraction. Thermal stress can be destructive, 

such as when expanding gasoline ruptures a tank. It can also be useful, for example, when two parts are 

joined together by heating one in manufacturing, then slipping it over the other and allowing the 

combination to cool. Thermal stress can explain many phenomena, such as the weathering of rocks and 

pavement by the expansion of ice when it freezes. 

Forces and pressures created by thermal stress can be quite large. Railroad tracks and roadways 

can buckle on hot days if they lack sufficient expansion joints. Power lines sag more in the summer than 

in the winter, and will snap in cold weather if there is insufficient slack. Cracks open and close in plaster 

walls as a house warms and cools. Glass cooking pans will crack if cooled rapidly or unevenly, because 

of differential contraction and the stresses it creates. (Pyrex is less susceptible because of its small 

coefficient of thermal expansion). Nuclear reactor pressure vessels are threatened by overly rapid cooling, 

and although none have failed, several have been cooled faster than considered desirable. Biological cells 

are ruptured when foods are frozen, detracting from their taste. Repeated thawing and freezing accentuates 

the damage. Even the oceans can be affected. A significant portion of the rise in sea level that is resulting 

from global warming is due to the thermal expansion of sea water. 

Figure 8.7: (a) A bimetallic strip bends as the temperature 

changes because the two metals have different expansion 

coefficients. (b) A bimetallic strip used in a thermostat to 

break or make electrical contact. 

 

Figure 8.6: Thermal expansion of a 

homogeneous metal washer. (The 

expansions exaggerated in this figure.) 
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Another example of thermal stress is found in the mouth. Dental fillings can expand differently 

from tooth enamel. It can give pain when eating ice cream or having a hot drink. Cracks might occur in 

the filling. Metal fillings (gold, silver, etc.) are being replaced by composite fillings (porcelain), which 

have smaller coefficients of expansion, and are closer to those of teeth. 

It is a simple matter to compute the thermal stress set up in a rod that is not free to expand or 

contract. Suppose that a rod of length (𝐿𝑜) and cross section area (𝐴) has its ends rigidly fastened while 

the temperature reduced by an amount (∆𝑇). 

The fractional change in length if the rod were free to contract would be 
∆𝐿

𝐿
= 𝛼∆𝑇  where (∆𝐿) 

and (∆𝑇) are both negative. Since the rod is not free to contract, the tension by a sufficient amount to 

produce an equal and opposite fractional change in length. But from the definition of Young’s modulus, 

𝑌 =
𝐹 𝐴⁄

∆𝐿 𝐿⁄
.     

∆𝐿

𝐿
=

𝐹

𝐴𝑌
 

Where this (∆𝐿) is positive. The tensile (𝐹) is determined by the requirement that the total 

fractional change in length, thermal expansion plus elastic strain must be zero:  

𝛼∆𝑇 +
𝐹

𝐴𝑌
= 0 

⟹ 𝐹 = 𝐴𝑌𝛼∆𝑇 

Since (∆𝑇) represents a decrease in temperature, it is negative, so (𝐹) is positive. 

The tensile stress in the rod is: 

𝐹

𝐴
= −𝑌𝛼∆𝑇                                                                          ( 8 − 5) 

If, instead, (∆𝑇)  represents an increase in temperature, then (𝐹) and (𝐹 𝐴⁄ ) become negative, 

corresponding to compressive force and stress, respectively. 

Similar phenomena occur with volume expansion. If a bottle is completely filled with water, titly 

capped and then heated, it will break because the thermal expansion coefficient for water is greater than 

that of glass. If a material is enclosed in a very rigid container so that its volume cannot be change, then 

arise in temperature (∆𝑇) is accompanied be an increase in pressure (∆𝑃). An analysis similar to that 

leading to equation (8-5) shows that the pressure increase is given by:  

∆𝑃 = 𝐵𝛽∆𝑇 

where (𝛽) is the coefficient of volume expansion and (𝐵) is the Bulk modulus.  

Example (8.2):  

      A segment of steel railroad track has a length of 𝟑𝟎 𝒎 when the temperature is 𝟎 ℃. (a) What is 

its length when the temperature is 𝟒𝟎 ℃ ? 
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Solution: 

Use equation (8-4) and the value of the coefficient of linear expansion from table 8-1: 

∆L = α𝐿𝑖∆𝑇 =  [11 x 1026 (℃) − 1](30000 m)(40 ℃)  =  0.013 m  

Find the new length of the track: 𝐿𝑓  =  30 𝑚 +  0.013 𝑚 =  30.013 𝑚  

(b) Suppose the ends of the rail are rigidly clamped at 0 ℃ so that expansion is prevented. What is the 

thermal stress set up in the rail if its temperature is raised to 40 ℃ 

Solution: 

Using tensile stress equation:  

Tensile stress =
𝐹

𝐴
= 𝑌

∆𝐿

𝐿𝑖
 

𝐹

𝐴
= (20 × 1010

𝑁

𝑚2
) (

0.013 𝑚

30 𝑚
) = 8.7 × 107𝑁/𝑚2 

The expansion in part (a) is 1.3 𝑐𝑚. This expansion is indeed measurable as predicted in the Conceptualize 

step. The thermal stress in part (b) can be avoided by leaving small expansion gaps between the rails.  

Example (8.3):  

      The Thermal Electrical Short is a poorly designed 

electronic device has two bolts attached to different parts of the 

device that almost touch each other in its interior as in figure 8.8. 

The steel and brass bolts are at different electric potentials, and if 

they touch, a short circuit will develop, damaging the device. The 

initial gap between the ends of the bolts is 𝟓 𝝁𝒎 at 𝟐𝟕 ℃ . At what 

temperature will the bolts touch? Assume the distance between the 

walls of the device is not affected by the temperature change. 

Solution: 

Set the sum of the length changes equal to the width of the gap: 

∆𝐿𝑏𝑟 + ∆𝐿𝑠𝑡 =∝𝑏𝑟 𝐿𝑖𝑏𝑟∆𝑇 +∝𝑠𝑡 𝐿𝑖𝑠𝑡∆𝑇 = 5 × 10−6𝑚 

Solve for ΔT:          ∆𝑇 =
5×10−6 𝑚

∝𝑏𝑟𝐿𝑖𝑏𝑟∆𝑇+∝𝑠𝑡𝐿𝑖𝑠𝑡∆𝑇
                              

∆𝑇 =
5 × 10−6 𝑚

[19 × 10−6(°C)−1](0.030𝑚) + [11 × 10−6(°C)−1](0.010𝑚)]
=  7.4 °C 

Find the temperature at which the bolts touch: 𝑇 =  27 ℃ +  7.4 ℃ =  34 ℃ 

This temperature is possible if the air conditioning in the building housing the device fails for a long 

period on a very hot summer day. 

Figure 8.8: Two bolts attached to 

different parts of an electrical device 

are almost touching when the 

temperature is 27 ℃. As the 

temperature increases, the ends of the 

bolts move toward each other. 
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PROBLEMS 

1. Convert the following to equivalent temperatures on the Celsius and Kelvin scales: (a) the normal 

human body temperature, 𝟗𝟖. 𝟔 °𝑭; (b) the air temperature on a cold day, −𝟓 °𝑭. 

2. In a constant-volume gas thermometer, the pressure at 𝟐𝟎 °𝑪 is 𝟎. 𝟗𝟖 𝒂𝒕𝒎. (a) What is the pressure at 

𝟒𝟓 °𝑪? (b) What is the temperature if the pressure is 𝟎. 𝟓 𝒂𝒕𝒎? 

3. There is a temperature whose numerical value is the same on both the Celsius and Fahrenheit scales. 

What is this temperature? 

4. A copper telephone wire has essentially no sag between poles 𝟑𝟓 𝒎 apart on a winter day when the 

temperature is −𝟐𝟎 °𝑪. How much longer is the wire on a summer day when 𝑻𝒄 =  𝟑𝟓 °𝑪? 

5. The concrete sections of a certain superhighway are designed to have a length of 𝟐𝟓 𝒎. The sections 

are poured and cured at 𝟏𝟎 °𝑪. What minimum spacing should the engineer leave between the sections 

to eliminate buckling if the concrete is to reach a temperature of 𝟓𝟎 °𝑪? 

6. A brass ring with a diameter of 𝟏𝟎 𝒄𝒎 at 𝟐𝟎 °𝑪 is heated and slipped over an aluminum rod with a 

diameter of 𝟏𝟎. 𝟎𝟏 𝒄𝒎 at 𝟐𝟎 °𝑪. Assume that the average coefficients of linear expansion are constant. 

(a) To what temperature must this combination be cooled to separate them? Is this temperature 

attainable? (b) If the aluminum rod were 𝟏𝟎. 𝟎𝟐 𝒄𝒎 in diameter, what would be the required 

temperature? 

7. The New River Gorge Bridge in West Virginia is a steel arch bridge 𝟓𝟏𝟖 𝒎 in length. How much does 

its length change between temperature extremes of −𝟐𝟎°𝑪 and 𝟑𝟓 °𝑪? 

8. The average coefficient of volume expansion for carbon tetrachloride is 𝟓. 𝟖𝟏 × 𝟏𝟎−𝟒 °𝑪−𝟏. If a 

𝟓𝟎 𝒈𝒂𝒍 steel container is filled completely with carbon tetrachloride when the temperature is 𝟏𝟎 °𝑪, 

how much will spill over when the temperature rises to 𝟑𝟎 °𝑪? 

9. The active element of a certain laser is a glass rod 𝟑𝟎 𝒄𝒎 long by 𝟏. 𝟓 𝒄𝒎 in diameter. If the 

temperature of the rod increases by 𝟔𝟓 °𝑪, what is the increase in (a) its length, (b) its diameter, and (c) 

its volume? (Let 𝜶 =  𝟗 ×  𝟏𝟎−𝟔 °𝑪−𝟏). 
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10. A volumetric glass flask made of Pyrex is calibrated at 𝟐𝟎 °𝑪. It is filled to the 𝟏𝟎𝟎 𝒎𝑳 mark with 

𝟑𝟓 °𝑪. (a) What is the volume of the acetone when it cools to 𝟐𝟎 °𝑪? (b) How significant is the change 

in volume of the flask? 

11. A concrete walk is poured on a day when the temperature is 𝟐𝟎 °𝑪, in such a way that the ends are 

unable to move. (a) What is the stress in the cement on a hot day of 𝟓𝟎 °𝑪? (b) Does the concrete 

fracture? Take Young’s modulus for concrete to be 𝟕 ×  𝟏𝟎𝟗 𝑵/𝒎𝟐 and the tensile strength to be   

𝟐 ×  𝟏𝟎𝟗 𝑵/𝒎𝟐. 

12. A steel rod undergoes a stretching force of 𝟓𝟎𝟎 𝑵. Its cross-sectional area is 𝟐 𝒄𝒎𝟐. Find the change 

in temperature that would elongate the rod by the same amount that the 𝟓𝟎𝟎 𝑵 force does.  

13. A steel rod 𝟒 𝒄𝒎 in diameter is heated so that its temperature increases by 𝟕𝟎 °𝑪. It is then fastened 

between two rigid supports. The rod is allowed to cool to its original temperature. Assuming that 

Young’s modulus for the steel is 𝟐𝟎. 𝟔 × 𝟏𝟎𝟏𝟎 𝑵/𝒎𝟐 and that its average coefficient of linear 

expansion is 𝟏𝟏 ×  𝟏𝟎−𝟔 °𝑪−𝟏, calculate the tension in the rod. 
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CHAPTER (9) 

THE FIRST LAW OF THERMODYNAMICS 

9.1 Introduction 

 This chapter focuses on the concept of internal energy, the first law of thermodynamics, and some 

important applications of the first law. The first law of thermodynamics describes systems in which the 

only energy change is that of internal energy and the transfers of energy are by heat and work.  

9.2 Heat and Internal Energy 

      Internal energy is all the energy of a system that is associated with its microscopic components 

atoms and molecules when viewed from a reference frame at rest with respect to the center of mass of the 

system. Any bulk kinetic energy of the system due to its motion through space is not included in internal 

energy. Internal energy includes kinetic energy of random translational, rotational, and vibrational motion 

of molecules.  

Heat is defined as the transfer of energy across the boundary of a system due to a temperature 

difference between the system and its surroundings. This is the case, for example, when you place a pan 

of cold water on a stove burner the burner is at a higher temperature than the water, and so the water gains 

energy. We shall also use the term heat to represent the amount of energy transferred by this method.  

      It is important to recognize that the internal energy of a system can be changed even when no 

energy is transferred by heat. For example, when a gas is compressed by a piston, the gas is warmed and 

its internal energy increases, but no transfer of energy by heat from the surroundings to the gas has 

occurred. If the gas then expands rapidly, it cools and its internal energy decreases, but no transfer of 

energy by heat from it to the surroundings has taken place. The temperature changes in the gas are due not 

to a difference in temperature between the gas and its surroundings but rather to the compression and the 

expansion. In each case, energy is transferred to or from the gas by work, and the energy change within 

the system is an increase or decrease of internal energy. The changes in internal energy in these examples 

are evidenced by corresponding changes in the temperature of the gas. 

9.2.1 Units of Heat 

      Initial notions of heat were based on a fluid called caloric that flowed from one substance to another 

and caused changes in temperature. From the name of this mythical fluid came an energy unit related to 

thermal processes, the calorie (cal), which is defined as the amount of energy transfer necessary to raise 

the temperature of (1 𝑔) of water from (14.5 °𝐶) to (15.5 °𝐶). (The “Calorie,” written with a capital 
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“𝐶” and used in describing the energy content of foods, is actually a kilocalorie.) The unit of energy in the 

U.S. customary system is the British thermal unit (Btu), which is defined as the amount of energy transfer 

required to raise the temperature of (1 𝑙𝑏) of water from (63 °𝐹) to (64 °𝐹). The joule has already been 

defined as an energy unit based on mechanical processes. Scientists are increasingly turning away from 

the calorie and the Btu and are using the joule when describing thermal processes. 

9.3 The Mechanical Equivalent of Heat 

It was found that whenever friction is present in a mechanical system, some mechanical energy is 

lost. Various experiments show that this lost mechanical energy does not simply disappear but is 

transformed into internal energy. Joule established the equivalence of these two forms of energy. 

            A schematic diagram of Joule’s most famous 

experiment is shown in figure 9.1. The system of 

interest is the Earth, the two blocks, and the water in a 

thermally insulated container. Work is done within the 

system on the water by a rotating paddle wheel, which 

is driven by heavy blocks falling at a constant speed. If 

the energy transformed in the bearings and the energy 

passing through the walls by heat are neglected, the 

decrease in potential energy of the system as the blocks 

fall equals the work done by the paddle wheel on the 

water and, in turn, the increase in internal energy of the 

water. If the two blocks fall through a distance (ℎ), the 

decrease in potential energy is (2𝑚𝑔ℎ), where 𝑚 is the 

mass of one block; this energy causes the temperature 

of the water to increase. 

    

Figure 9.1: Joule’s experiment for      

determining the mechanical equivalent of 

heat. The falling blocks rotate the paddles, 

causing the temperature of the water to 

increase. 

              By varying the conditions of the experiment, Joule found that the decrease in mechanical energy 

is proportional to the product of the mass of the water and the increase in water temperature. The 

proportionality constant was found to be approximately (4.18 𝐽/𝑔. °𝐶). Hence, (4.18 𝐽) of mechanical 

energy raises the temperature of (1 𝑔) of water by 1°𝐶. More precise measurements taken later 

demonstrated the proportionality to be (4.186 𝐽/𝑔 . °𝐶) when the temperature of the water was raised from 

(14.5 °𝐶) to (15.5 °𝐶). We adopt this “15 − 𝑑𝑒𝑔𝑟𝑒𝑒 𝑐𝑎𝑙𝑜𝑟𝑖𝑒” value:    

       1 𝑐𝑎𝑙 =  4.186 𝐽                                                                          (9 − 1) 
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      This equality is known, for purely historical reasons, as the mechanical equivalent of heat. A more 

proper name would be equivalence between mechanical energy and internal energy, but the historical 

name is well entrenched in our language, despite the incorrect use of the word heat.  

Example (9.1): 

A student eats a dinner rated at 𝟐𝟎𝟎𝟎 𝑪𝒂𝒍𝒐𝒓𝒊𝒆𝒔. He wishes to do an equivalent amount of work in the 

gymnasium by lifting a 𝟓𝟎 𝒌𝒈 barbell. How many times must he raise the barbell to expend this much 

energy? Assume he raises the barbell 𝟐 𝒎 each time he lifts it and he regains no energy when he lowers 

the barbell. 

Solution: 

Imagine the student raising the barbell. He is doing work on the system of the barbell and the Earth, so 

energy is leaving his body. The total amount of work that the student must do is 2000 𝐶𝑎𝑙𝑜𝑟𝑖𝑒𝑠. 

Reduce the conservation of energy equation to the appropriate expression for the system of the barbell and 

the Earth: 

𝛥𝑈𝑡𝑜𝑡𝑎𝑙  =  𝑊𝑡𝑜𝑡𝑎𝑙  (1) 

Express the change in gravitational potential energy of the system after the barbell is raised once: 

𝛥𝑈 =  𝑚𝑔ℎ 

Express the total amount of energy that must be transferred into the system by work for lifting the barbell 

𝑛 times, assuming energy is not regained when the barbell is lowered: 

𝛥𝑈𝑡𝑜𝑡𝑎𝑙  = 𝑛𝑚𝑔ℎ   (2)            

Substitute equation (2) into equation (1): 

𝑛𝑚𝑔ℎ =  𝑊𝑡𝑜𝑡𝑎𝑙    

Solve for (𝑛):              𝑛 =
𝑊𝑡𝑜𝑡𝑎𝑙

𝑚𝑔ℎ
=

(2000 × 103 × 4.186𝐽)

(50 𝑘𝑔)(9.80 𝑚/𝑠2)(2 𝑚)
= 8.54 × 103 𝑡𝑖𝑚𝑒𝑠 

If the student is in good shape and lifts the barbell once every (5 𝑠), it will take him about (12 ℎ) 

to perform this feat. Clearly, it is much easier for this student to lose weight by dieting.  

In reality, the human body is not 100% efficient. Therefore, not all the energy transformed within 

the body from the dinner transfers out of the body by work done on the barbell. Some of this energy is 

used to pump blood and perform other functions within the body. Therefore, the (2000 𝐶𝑎𝑙𝑜𝑟𝑖𝑒𝑠) can be 

worked off in less time than (12 ℎ) when these other energy processes are included. 
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9.4 Specific Heat and Calorimetry 

      When energy is added to a system and there is no change in the kinetic or potential energy of the 

system, the temperature of the system usually rises. (An exception to this statement is the case in which a 

system undergoes a change of state also called a phase transition as discussed in the next section.) If the 

system consists of a sample of a substance, we find that the quantity of energy required to raise the 

temperature of a given mass of the substance by some amount varies from one substance to another. For 

example, the quantity of energy required to raise the temperature of (1 𝑘𝑔) of water by (1°𝐶) is (4186 𝐽), 

but the quantity of energy required to raise the temperature of (1 𝑘𝑔) of copper by (1°𝐶) is only (387 𝐽).  

      The heat capacity (𝐶) of a particular sample is defined as the amount of energy needed to raise 

the temperature of that sample by (1°𝐶). From this definition, we see that if energy (𝑄) produces a change 

(𝛥𝑇) in the temperature of a sample, then: 

𝑄 =  𝐶 𝛥𝑇                                                                          (9 − 2) 

        The specific heat (𝑐) of a substance is the heat capacity per unit mass. Or as the amount of energy 

needed to raise the temperature of 1gm of sample by (1°𝐶)Therefore, if energy (𝑄) transfers to a sample 

of a substance with mass 𝑚 and the temperature of the sample changes by (𝛥𝑇), the specific heat of the 

substance is 

             𝑐 =
𝑄

𝑚∆𝑇
                                                                                  (9 −  3) 

      Specific heat is essentially a measure of how thermally insensitive a substance is to the addition of 

energy. The greater a material’s specific heat, the more energy must be added to a given mass of the 

material to cause a particular temperature change. Table 9-1 lists representative specific heats. From this 

definition, we can relate the energy (𝑄) transferred between a sample of mass (𝑚) of a material and its 

surroundings to a temperature change 𝛥𝑇 as 

               𝑄 =  𝑚𝑐𝛥𝑇                                                                       (9 −  4) 

      For example, the energy required to raise the temperature of (0.5 𝑘𝑔) of water by (3 °𝐶) is                   

𝑄 =  (0.5 𝑘𝑔)(4186 𝐽/𝑘𝑔 . °𝐶)(3 °𝐶)  =  6.28 ×  103 𝐽. Notice that when the temperature increases, 𝑄 

and 𝛥𝑇 are taken to be positive and energy transfers into the system. When the temperature decreases, 𝑄 

and 𝛥𝑇 are negative and energy transfers out of the system.  

Specific heat varies with temperature. However, if temperature intervals are not too great, the 

temperature variation can be ignored, and c can be treated as a constant. For example, the specific heat of 

water varies by only about 1% from (0 °𝐶) to 100 °𝐶 at atmospheric pressure. Unless stated otherwise, 

we shall neglect such variations. 
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From table 9-1 we note that water has the highest specific heat of common materials. This high 

specific heat is responsible, in part, for the moderate temperatures found near large bodies of water. 

Table 9-1: Specific Heats of Some Substances at 25°𝐶 and Atmospheric Pressure 

Conservation of Energy: Calorimetry 

      One technique for measuring specific heat involves heating a sample to some known temperature 

(𝑇𝑥), placing it in a vessel containing water of known mass and temperature and measuring the temperature 

of the water after equilibrium has been reached. Because a negligible amount of mechanical work is done 

in the process, the law of the conservation of energy requires that the amount of energy that leaves the 

sample (of unknown specific heat) equal the amount of energy that enters the water. 

This technique is called calorimetry, and devices in which this energy transfer occurs are called 

calorimeters. Conservation of energy allows us to write the equation 

       𝑄𝑐𝑜𝑙𝑑  =  −𝑄ℎ𝑜𝑡                                                                         (9 − 5) 

which simply states that the energy leaving the hot part of the system by heat is equal to that entering the 

cold part of the system. The negative sign in the equation is necessary to maintain consistency with our 

sign convention for heat. The heat (𝑄) hot is negative because energy is leaving the hot sample. The 

negative sign in the equation ensures that the right-hand side is positive and thus consistent with the left-

hand side, which is positive because energy is entering the cold water.  

      Suppose (𝑚𝑥) is the mass of a sample of some substance whose specific heat we wish to determine. 

Let’s call its specific heat (𝑐𝑥) and its initial temperature (𝑇𝑥) as shown in figure 9.2. Likewise, let 

(𝑚𝑤, 𝑐𝑤) and (𝑇𝑤) represent corresponding values for the water. If (𝑇𝑓) is the final temperature after the 

system comes to equilibrium, equation (9-4) shows that the energy transfer for the water is 

Material  Specific Heat (𝐽/𝑘𝑔. °𝑪)  Substance  Specific Heat (𝐽/𝑘𝑔. °𝑪) 

Aluminum  900  Brass  380 

Beryllium  1830  Glass  837 

Cadmium  230  Ice (−5 ℃)  2090 

Copper  387  Marble  860 

Germanium  322  Wood  1700 

Gold  129  Alcohol (ethyl)  2400 

Iron  448  Mercury  140 

Lead  128  Water (15 ℃)  4186 

Silver  234  Steam  2010 
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(𝑚𝑤𝑐𝑤(𝑇𝑓  −  𝑇𝑤)), which is positive because (𝑇𝑓   >  𝑇𝑤), and that the energy transfer for the sample of 

unknown specific heat is (𝑚𝑥𝑐𝑥(𝑇𝑓  −  𝑇𝑥)), which is negative. Substituting these expressions into 

equation (9-5) gives: 

𝑚𝑥𝑐𝑥(𝑇𝑓  −  𝑇𝑥) = −𝑚𝑤𝑐𝑤(𝑇𝑓  −  𝑇𝑤) 

This equation can be solved for the unknown specific heat (𝑐𝑥).  

Example (9.2):  

A 𝟎. 𝟎𝟓 𝒌𝒈 ingot of metal is heated to 𝟐𝟎𝟎 °𝑪 and then dropped into a calorimeter containing 𝟎. 𝟒 𝒌𝒈 of 

water initially at 𝟐𝟎 °𝑪. The final equilibrium temperature of the mixed system is 𝟐𝟐. 𝟒 °𝑪. Find the 

specific heat of the metal. 

Solution: 

Use equation (9-4) to evaluate each side of equation (9-5): 

𝑚𝑤𝑐𝑤(𝑇𝑓  −  𝑇𝑤) = 𝑚𝑥𝑐𝑥(𝑇𝑓  −  𝑇𝑥) 

Solve for (𝑐𝑥):  𝑐𝑥 =
𝑚𝑤𝑐𝑤(𝑇𝑓 − 𝑇𝑤)

𝑚𝑥(𝑇𝑓 − 𝑇𝑥)
=

(0.4 𝑘𝑔)(4186 𝐽/𝑘𝑔.°C)(22.4 °C−20 °C)

(0.05 𝑘𝑔)(200 °C−22.4 °C)
= 453

𝐽

𝑘𝑔.°C
 

The temperature of the ingot is initially above the steam point. Therefore, some of the water may 

vaporize when the ingot is dropped into the water. We assume the system is sealed and this steam cannot 

escape. Because the final equilibrium temperature is lower than the steam point, any steam that does result 

re-condenses back into water. 

9.5 Latent Heat 

A substance can undergo a change in temperature when energy is transferred between it and its 

surroundings. In some situations, however, the transfer of energy does not result in a change in 

temperature. That is the case whenever the physical characteristics of the substance change from one form 

to another; such a change is commonly referred to as a phase change. Two common phase changes are 

from solid to liquid (melting) and from liquid to gas (boiling); another is a change in the crystalline 

structure of a solid. All such phase changes involve a change in the system’s internal energy but no change 

in its temperature. The increase in internal energy in boiling, for example, is represented by the breaking 

of bonds between molecules in the liquid state; this bond breaking allows the molecules to move farther 

apart in the gaseous state, with a corresponding increase in intermolecular potential energy. 

Different substances respond differently to the addition or removal of energy as they change phase 

because their internal molecular arrangements vary. Also, the amount of energy transferred during a phase 

change depends on the amount of substance involved. When discussing two phases of a material, we will 

use the term higher-phase material to mean the material existing at the higher temperature. So, for 
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example, if we discuss water and ice, water is the higher-phase material, whereas steam is the higher-phase 

material in a discussion of steam and water. Consider a system containing a substance in two phases in 

equilibrium such as water and ice. The initial amount of the higher-phase material, water, in the system is 

𝑚𝑖. Now imagine that energy 𝑄 enters the system. As a result, the final amount of water is 𝑚𝑓 due to the 

melting of some of the ice. Therefore, the amount of ice that melted, equal to the amount of new water, is 

     ∆𝑚 =  𝑚𝑓  −  𝑚𝑖 

We define the latent heat for this phase change as 

       𝐿 =
𝑄

∆𝑚
                                                                                      (9 − 6) 

          This parameter is called latent heat (literally, the “hidden” heat) because this added or removed 

energy does not result in a temperature change. The value of 𝐿 for a substance depends on the nature of 

the phase change as well as on the properties of the substance. If the entire amount of the lower-phase 

material undergoes a phase change, the change in mass 𝛥𝑚 of the higher-phase material is equal to the 

initial mass of the lower-phase material. For example, if an ice cube of mass 𝑚 on a plate melts completely, 

the change in mass of the water is 𝑚𝑓  −  0 =  𝑚, which is the mass of new water and is also equal to the 

initial mass of the ice cube. From the definition of latent heat, and again choosing heat as our energy 

transfer mechanism, the energy required to change the phase of a pure substance is 

       𝑄 =  𝐿 𝛥𝑚                                                                              (9 − 7) 

where 𝛥𝑚 is the change in mass of the higher-phase material, The latent heats of various substances vary 

considerably as data in table 9-2. 

Table 9-2: Latent Heats of Fusion and Vaporization 

Material  Melting Point 

(℃) 

Latent Heat of 

Fusion (𝐽/𝑘𝑔) 

Boiling Point (℃) Latent Heat of 

Vaporization (𝐽/𝑘𝑔) 

Helium  -269.665 5.23 x 103 -268.93 2.09 x 104 

Oxygen  -218.79 1.38 x 104 -182.97 2.13 x 105 

Nitrogen  -209.97 2.55 x 104 -195.81 2.01 x 105 

Alcohol(ethyl)  -114 1.04 x 105 78 8.54x 105 

Water  0.00 3.33 x 105 100.00 2.26 x 106 

Lead  327.3 2.45 x 105 1750 8.70 x 105 

Aluminum  660 3.97 x 105 2450 1.14 x 107 

Silver  960.80 8.82 x 104 2193 2.33 x 106 

Gold  1063.0 6.44 x 104 2660 1.58 x 106 

Copper  1083 1.34 x 105 1187 5.06 x 106 
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As illustrated in table 9-2 there are latent heat of fusion (𝐿𝑓) is the term used when the phase change is 

from solid to liquid, and latent heat of vaporization (𝐿𝑣) is the term used when the phase change is from 

liquid to gas (the liquid “vaporizes”).  

When energy enters a system, causing melting or vaporization, the amount of the higher-phase 

material increases, so (𝛥𝑚) is positive and (𝑄) is positive, consistent with our sign convention. When 

energy is extracted from a system, causing freezing or condensation, the amount of the higher-phase 

material decreases, so (𝛥𝑚) is negative and (𝑄) is negative, again consistent with our sign convention. 

Keep in mind that (𝛥𝑚) in equation (9-7) always refers to the higher-phase material 

To understand the role of latent heat in phase changes, consider the energy required to convert a 

(1 𝑔) cube of ice at (230 °𝐶) to steam at (120 °𝐶). Figure 9.2 indicates the experimental results obtained 

when energy is gradually added to the ice. The results are presented as a graph of temperature of the system 

of the ice cube versus energy added to the system. Let’s examine each portion of the red-brown curve, 

which is divided into parts (𝐴) through (𝐸).  

Part A. On this portion of the curve, the temperature of the ice changes from (230 °𝐶) to (0 °𝐶). Equation   

(9-4) indicates that the temperature varies linearly with the energy added, so the experimental result is a 

straight line on the graph. Because the specific heat of ice is (2090 𝐽/𝑘𝑔. °𝐶), we can calculate the amount 

of energy added by using equation (9-4): 

       𝑄 =  𝑚𝑖𝑐𝑖𝛥𝑇 =  (1.00 × 10−3 𝑘𝑔)(2090 𝐽/𝑘𝑔 . °𝐶)(30 °𝐶)  =  62.7 𝐽 

 

Figure 9.2: A plot of temperature versus energy added when (1𝑔) of ice initially at (230 °𝐶) is 

converted to steam at (120 °𝐶). 
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Part B. When the temperature of the ice reaches (0 °𝐶), the ice–water mixture remains at this temperature 

even though energy is being added until all the ice melts. The energy required to melt (1 𝑔) of ice at (0 °𝐶) 

is, from equation (9-7), 

 𝑄 =  𝐿𝑓 𝛥𝑚𝑤  =  𝐿𝑓𝑚𝑖  =  (3.33 × 105 𝐽/𝑘𝑔)(1.00 ×  10−3 𝑘𝑔)  =  333 𝐽 

At this point, we have moved to the  ( 62.7 𝐽 +  333 𝐽) = 396 𝐽 mark on the energy axis in figure 9.2. 

 

Part C. Between (0 °𝐶) and (100 °𝐶), nothing surprising happens. No phase change occurs, and so all 

energy added to the water is used to increase its temperature. The amount of energy necessary to increase 

the temperature from (0 °𝐶) to (100 °𝐶) is  

       𝑄 =  𝑚𝑤𝑐𝑤 𝛥𝑇 =  (1.00 × 10−3 𝑘𝑔)(4.19 × 103 𝐽/𝑘𝑔 . °𝐶)(100 °𝐶)  =  419 𝐽 

 

Part D. At (100 °𝐶), another phase change occurs as the water changes from water at (100 °𝐶) to steam 

at (100 °𝐶). Similar to the ice–water mixture in part B, the water– steam mixture remains at (100 °𝐶) 

even though energy is being added until all the liquid has been converted to steam. The energy required to 

convert (1𝑔) of water to steam at (100 °𝐶) is 

𝑄 =  𝐿𝑣 𝛥𝑚𝑠  = 𝐿𝑣𝑚𝑤  =  (2.26 ×  106 𝐽/𝑘𝑔)(1.00 × 10−3 𝑘𝑔)  =  2.26 𝑥 103 𝐽 

 

Part E. On this portion of the curve, as in parts (𝐴) and (𝐶), no phase change occurs; therefore, all energy 

added is used to increase the temperature of the steam. The energy that must be added to raise the 

temperature of the steam from (100 °𝐶) to (120 °𝐶) is 

𝑄 =  𝑚𝑠𝑐𝑠 𝛥𝑇 =  (1.00 × 10−3 𝑘𝑔)(2.01 × 103 𝐽/𝑘𝑔 . °𝐶)(20.0°𝐶)  =  40.2 𝐽 

The total amount of energy that must be added to change (1 𝑔) of ice at (230 °𝐶) to steam at 

(120 °𝐶) is the sum of the results from all five parts of the curve, which is (3.11 ×  103 𝐽). Conversely, 

to cool (1𝑔) of steam at (120 °𝐶) to ice at (230 °𝐶), we must remove (3.11 ×  103 𝐽) of energy. 

      Notice in figure 9.2 the relatively large amount of energy that is transferred into the water to 

vaporize it to steam. Imagine reversing this process, with a large amount of energy transferred out of steam 

to condense it into water. That is why a burn to your skin from steam at (100 °𝐶) is much more damaging 

than exposure of your skin to water at (100 °𝐶). A very large amount of energy enters your skin from the 

steam, and the steam remains at (100 °𝐶) for a long time while it condenses. Conversely, when your skin 

makes contact with water at (100 °𝐶), the water immediately begins to drop in temperature as energy 

transfers from the water to your skin. 
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If liquid water is held perfectly still in a very clean container, it is possible for the water to drop 

below (0 °𝐶) without freezing into ice. This phenomenon, called supercooling, arises because the water 

requires a disturbance of some sort for the molecules to move apart and start forming the large, open ice 

structure that makes the density of ice lower than that of water as discussed in Section 1.4. If supercooled 

water is disturbed, it suddenly freezes. The system drops into the lower-energy con-figuration of bound 

molecules of the ice structure, and the energy released raises the temperature back to (0 °𝐶). 

            It is also possible to create superheating. For example, clean water in a very clean cup placed in a 

microwave oven can sometimes rise in temperature beyond (100 °𝐶) without boiling because the 

formation of a bubble of steam in the water requires scratches in the cup or some type of impurity in the 

water to serve as a nucleation site.  

Example (9.3):  

What mass of steam initially at 𝟏𝟑𝟎 °𝑪 is needed to warm 𝟐𝟎𝟎 𝒈 of water in a 𝟏𝟎𝟎 𝒈 glass container from 

𝟐𝟎 °𝑪 to 𝟓𝟎 °𝑪? 

Solution: 

Write equation (9-5) to describe the calorimetry process: 

𝑄𝑐𝑜𝑙𝑑  =  −𝑄ℎ𝑜𝑡  (1) 

The steam undergoes three processes: first a decrease in temperature to (100 °𝐶), then condensation into 

liquid water, and finally a decrease in temperature of the water to (50 °𝐶). 

𝑄1  =  𝑚𝑠𝑐𝑠𝛥𝑇𝑠  

Find the energy transfer in the first process using the unknown mass (𝑚𝑠) of the steam: 

𝑄2  =  𝐿𝑣𝛥𝑚𝑠 = 𝐿𝑣(0 − 𝑚𝑠) = − 𝑚𝑠𝐿𝑣  

Find the energy transfer in the second process:  

𝑄3  =  𝑚𝑠𝑐𝑤𝛥𝑇ℎ𝑜𝑡 𝑤𝑎𝑡𝑒𝑟  

Find the energy transfer in the third process:  

𝑄ℎ𝑜𝑡  =  𝑄1  +  𝑄2  +  𝑄3  =  𝑚𝑠(𝑐𝑠𝛥𝑇𝑠  −  𝐿𝑣  +  𝑐𝑤𝛥𝑇ℎ𝑜𝑡 𝑤𝑎𝑡𝑒𝑟)   (2) 

Add the energy transfers in these three stages: 

𝑄𝑐𝑜𝑙𝑑 =  𝑚𝑤𝑐𝑤𝛥𝑇𝑐𝑜𝑙𝑑 𝑤𝑎𝑡𝑒𝑟  +  𝑚𝑔𝑐𝑔𝛥𝑇𝑔𝑙𝑎𝑠𝑠    (3) 

The (20 °𝐶) water and the glass undergo only one process, an increase in temperature to (50 °𝐶). Find 

the energy transfer in this process: 

Substitute equations (2) and (3) into equation (1): 

𝑚𝑤𝑐𝑤𝛥𝑇𝑐𝑜𝑙𝑑 𝑤𝑎𝑡𝑒𝑟  + 𝑚𝑔𝑐𝑔𝛥𝑇𝑔𝑙𝑎𝑠𝑠  =  −𝑚𝑠(𝑐𝑠𝛥𝑇𝑠  −  𝐿𝑣  +  𝑐𝑤𝛥𝑇ℎ𝑜𝑡 𝑤𝑎𝑡𝑒𝑟) 

Solve for (𝑚𝑠):       
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𝑚𝑠 = −
𝑚𝑤𝑐𝑤Δ𝑇cold water + 𝑚𝑔𝑐𝑔Δ𝑇glass

𝑐𝑠Δ𝑇𝑠 −  𝐿𝑣 + 𝑐𝑤Δ𝑇hot water
 

Substitute numerical values: 

𝑚𝑠 = −
(0.2𝑘𝑔)(4.186 𝐽 𝑘𝑔.⁄ °C)(50°C − 20°C) + (0.1𝑘𝑔)(837 𝐽 𝑘𝑔.⁄ °C)(50°C − 20°C)

(2010 𝐽 𝑘𝑔.⁄ °C)(100°C − 130°C) − (2.26 × 106 𝐽 𝑘𝑔⁄ ) + (4.186 𝐽 𝑘𝑔.⁄ °C)(50°C − 100°C)
 

        = 1.09 × 10−2 𝑘𝑔 = 10.9 𝑔 

9.6 Work and Heat in Thermodynamic Processes 

      In the macroscopic approach to thermodynamics we describe the state of a system with such 

variables as pressure, volume, and internal energy. The number of macroscopic variables needed to 

characterize a system depends on the nature of the system. For a homogeneous system, such as a gas 

containing only one type of molecule, usually only two variables are needed. However, it is important to 

note that a macroscopic state of an isolated system can be specified only if the system is in thermal 

equilibrium internally. In the case of a gas in a container, internal thermal equilibrium requires that every 

part of the gas be at the same pressure and temperature.  

      Consider a gas contained in a cylinder fitted with a movable piston (figure 9.3). At equilibrium, 

the gas occupies a volume (𝑉) and exerts a uniform pressure (𝑃) on the cylinder’s walls and on the piston. 

If the piston has a cross-sectional area 𝐴, the force exerted by the gas on the piston is (𝐹 = 𝑃𝐴). Now let 

us assume that the gas expands quasi-statically, that is, slowly enough to allow the system to remain 

essentially in thermal equilibrium at all times. As the piston moves up a distance (𝑑𝑦), the work done by 

the gas on the piston is 

𝑑𝑤 = 𝐹𝑑𝑦 = 𝑃𝐴𝑑𝑦 

Because (𝐴 𝑑𝑦) is the increase in volume of the gas (𝑑𝑉), we can express the work done by the gas as 

       𝑑𝑊 =  𝑃𝑑𝑉                                                                    (9 − 8) 

      Since the gas expands, (𝑑𝑉) is positive, and so the work done by the gas is positive. If the gas were 

compressed, 𝑑(𝑉) would be negative, indicating that the work done by the gas (which can be interpreted 

as work done on the gas) was negative. Clearly, the work done by the gas is zero when the volume remains 

constant. The total work done by the gas as its volume changes from (𝑉𝑖) to (𝑉𝑓) is given by the integral 

of equation (9-8): 

       𝑊 = ∫ 𝑃𝑑𝑉
𝑉𝑓

𝑉𝑖
                                                                 (9 − 9)                                                                                               

        To evaluate this integral, it is not enough that we know   only the initial and final values of the 

pressure. We must also know the pressure at every instant during the expansion; we would know this if 

we had a functional dependence of (𝑃) with respect to (𝑉). This important point is true for any processthe 
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expansion we are discussing here, or any other. To fully specify a process, we must know the values of 

the thermodynamic variables at every state through which the system passes between the initial and final 

states. In the expansion we are considering here, we can plot the pressure and volume at each instant to 

create a 𝑃𝑉 diagram like the one shown in figure 9.4. The value of the integral in equation (9-9) is the area 

bounded by such a curve. Thus, we can say that 

The work done by a gas in the expansion from an initial state to a final state is the area under the 

curve connecting the states in a 𝑃𝑉 diagram. 

 

 

 

 

 

 

 

 

 

 

    

       

 

 

 

 

 

 

 

 

 

 

As figure 9.4 shows, the work done in the expansion from the initial state (𝑖) to the final state (𝑓 ) 

depends on the path taken between these two states. To illustrate this important point, consider several 

paths connecting (𝑖) and (𝑓)  (figure 9.5). In the process depicted in figure 9.5a, the pressure of the gas is 

first reduced from (𝑃𝑖) to (𝑃𝑓) by cooling at constant volume (𝑉𝑖). The gas then expands from (𝑉𝑖) to (𝑉𝑓) 

Figure 9.5: The work done by a gas as it is taken from an initial state to a final 

state depends on the path between these states.  

Figure 9.4: A gas is compressed quasi-

statically (slowly) from state (𝑖) to state (𝑓). 

An outside agent must do positive work on the 

gas to compress it. 

Figure 9.3: Work is done on a gas 

contained in a cylinder at a pressure (𝑃) 

as the piston is pushed downward so that 

the gas is compressed. 
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at constant pressure (𝑃𝑓). The work done along this path is equal to the area of the shaded rectangle, which 

is equal to (𝑃𝑓  (𝑉𝑓 − 𝑉𝑖)). 

        In figure 9.5b, the gas first expands from (𝑉𝑖) to (𝑉𝑓) at constant pressure (𝑃𝑖). then, its pressure 

is reduced to (𝑃𝑓) at constant volume (𝑉𝑓). The value of the work done along this path is (𝑃𝑖 (𝑉𝑓  −  𝑉𝑖)), 

which is greater than that for the process described in figure 9.5a. Finally, for the process described in 

figure 9.5c, where both (𝑃) and (𝑉) change continuously, the work done has some value intermediate 

between the values obtained in the first two processes. Therefore, the work done by a system depends on 

the initial and final states and on the path followed by the system between these states. The energy transfers 

by heat (𝑄) into or out of a system also depends on the process. 

 Consider the situations depicted in figure 9.6. In 

figure 9.6a, the gas is thermally insulated from its 

surroundings except at the bottom of the gas-filled 

region, where it is in thermal contact with an energy 

reservoir. An energy reservoir is a source of energy that 

is considered to be so great that a finite transfer of energy 

from the reservoir does not change its temperature. 

During this expansion to the final volume (𝑉𝑓), just 

enough energy is transferred by heat from the reservoir to 

the gas to maintain a constant temperature (𝑇𝑖).  

         

Now consider the completely thermally insulated system shown in figure 9.6b. When the membrane is 

broken, the gas expands rapidly into the vacuum until it occupies a volume 𝑉( )𝑓 and is at a pressure 

(𝑃𝑓). In this case, the gas does no work because there is no movable piston on which the gas applies a 

force. Furthermore, no energy is transferred by heat through the insulating wall. 

The initial and final states of the ideal gas in figure 9.6a are identical to the initial and final states 

in figure 9.6b, but the paths are different. In the first case, the gas does work on the piston, and energy is 

transferred slowly to the gas. In the second case, no energy is transferred, and the value of the work done 

is zero. Therefore, we conclude that energy transfer by heat, like work done, depends on the initial, final, 

and intermediate states of the system. In other words, because heat and work depend on the path, neither 

quantity is determined solely by the end points of a thermodynamic process. 

Figure 9.6: (a) A gas at temperature 𝑇𝑖 expands 

slowly while absorbing energy from a reservoir in 

order to maintain a constant temperature. (b) A gas 

expands rapidly into an evacuated region after a 

membrane is broken. 
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9.7 The First Law of Thermodynamics 

The law of conservation of energy stated that the change in the energy of a system is equal to the 

sum of all transfers of energy across the system’s boundary. The first law of thermodynamics is a special 

case of the law of conservation of energy that describes processes in which only the internal energy (It is 

an unfortunate accident of history that the traditional symbol for internal energy is (𝑈), which is also the 

traditional symbol for potential energy. To avoid confusion between potential energy and internal energy, 

we use the symbol (𝐸𝑖𝑛𝑡) for internal energy in this book. If you take an advanced course in 

thermodynamics, however, be prepared to see (𝑈) used as the symbol for internal energy in the first law.) 

changes and the only energy transfers are by heat and work: 

        𝛥𝐸𝑖𝑛𝑡  =  𝑄 +  𝑊                                                                   (9 − 10) 

An important consequence of the first law of thermodynamics is that there exists a quantity known 

as internal energy whose value is determined by the state of the system. The internal energy is therefore a 

state variable like pressure, volume, and temperature. 

        Let us investigate some special cases in which the first law can be applied. First, consider an 

isolated system, that is, one that does not interact with its surroundings. In this case, no energy transfer by 

heat takes place and the work done on the system is zero; hence, the internal energy remains constant. That 

is, because (𝑄 =  𝑊 =  0), it follows that (𝛥𝐸𝑖𝑛𝑡  =  0); therefore, (𝐸𝑖𝑛𝑡,𝑖  =  𝐸𝑖𝑛𝑡,𝑓). We conclude that 

the internal energy (𝐸𝑖𝑛𝑡) of an isolated system remains constant. 

        Next, consider the case of a system that can exchange energy with its surroundings and is taken 

through a cyclic process, that is, a process that starts and ends at the same state. In this case, the change 

in the internal energy must again be zero because (𝐸𝑖𝑛𝑡) is a state variable; therefore, the energy (𝑄) added 

to the system must equal the negative of the work (𝑊) done on the system during the cycle. That is, in a 

cyclic process,  

𝛥𝐸𝑖𝑛𝑡  =  0 𝑎𝑛𝑑 𝑄 =  −𝑊 (𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠) 

On a PV diagram, a cyclic process appears as a closed curve. (The processes described in figure 

9.6 are represented by open curves because the initial and final states differ.) It can be shown that in a 

cyclic process, the net work done on the system per cycle equals the area enclosed by the path representing 

the process on a 𝑃𝑉 diagram.  

9.8 Some Applications of the First Law of Thermodynamics 

1- Adiabatic process: an adiabatic process is one during which no energy enters or leaves the system by 

heat; that is, (𝑄 =  0). An adiabatic process can be achieved either by thermally insulating the walls of 
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the system or by performing the process rapidly so that there is negligible time for energy to transfer by 

heat. Applying the first law of thermodynamics to an adiabatic process gives 

       𝛥𝐸𝑖𝑛𝑡  =  𝑊 (𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)                                              (9 − 11) 

This result shows that if a gas is compressed adiabatically such that (𝑊) is positive, then 𝛥𝐸𝑖𝑛𝑡 is 

positive and the temperature of the gas increases. Conversely, the temperature of a gas decreases when the 

gas expands adiabatically. 

     Adiabatic processes are very important in engineering practice. Some common examples are the 

expansion of hot gases in an internal combustion engine, the liquefaction of gases in a cooling system, and 

the compression stroke in a diesel engine.      

 

2- Isobaric process: a process that occurs at constant pressure. In such a process, the values of the heat 

and the work are both usually nonzero. The work done on the gas in an isobaric process is simply 

𝑊 =  −𝑃(𝑉𝑓 −  𝑉𝑖) (𝑖𝑠𝑜𝑏𝑎𝑟𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)                                  (9 − 12) 

where, (𝑃) is the constant pressure of the gas during the process. 

 

3- Isovolumetric process: a process that takes place at constant volume. Because the volume of the gas 

does not change in such a process, the work given by equation (9-9) is zero. Hence, from the first law we 

see that in an isovolumetric process, because (𝑊 =  0), 

       𝛥𝐸𝑖𝑛𝑡  =  𝑄 (𝑖𝑠𝑜𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)                                        (9 − 13) 

        This expression specifies that if energy is added by heat to a system kept at constant volume, all 

the transferred energy remains in the system as an increase in its internal energy. For example, when a can 

of spray paint is thrown into a fire, energy enters the system (the gas in the can) by heat through the metal 

walls of the can. Consequently, the temperature, and therefore the pressure, in the can increases 

until the can possibly explodes. 

 

4- Isothermal process: a process that occurs at constant temperature. A plot of (𝑃) versus (𝑉) at constant 

temperature for an ideal gas yields a hyperbolic curve called an isotherm. The internal energy of an ideal 

gas is a function of temperature only. Hence, in an isothermal process involving an ideal gas, (𝛥𝐸𝑖𝑛𝑡  =  0). 

For an isothermal process, we conclude from the first law that the energy transfer 𝑄 must be equal to the 

negative of the work done on the gas; that is, (𝑄 =  −𝑊). Any energy that enters the system by heat is 

transferred out of the system by work; as a result, no change in the internal energy of the system occurs in 

an isothermal process. 
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9.9 Energy Transfer Mechanisms in Thermal Processes 

      It is important to understand the rate at which energy is transferred between a system and its 

surroundings and the mechanisms responsible for the transfer. let us look at three common energy transfer 

mechanisms that can result in a change in internal energy of a system. 

Thermal Conduction 

The energy transfer process that is most clearly associated with a temperature difference is thermal 

conduction. In this process, the transfer can be represented on an atomic scale as an exchange of kinetic 

energy between microscopic particles molecules, atoms, and electrons in which less energetic particles 

gain energy in collisions with more energetic particles. For example, if you hold one end of a long metal 

bar and insert the other end into a flame, you will find that the temperature of the metal in your hand soon 

increases. The energy reaches your hand by means of conduction. We can understand the process of 

conduction by examining what is happening to the microscopic particles in the metal. Initially, before the 

rod is inserted into the flame, the microscopic particles are vibrating about their equilibrium positions. As 

the flame heats the rod, those particles near the flame begin to vibrate with greater and greater amplitudes. 

These particles, in turn, collide with their neighbors and transfer some of their energy in the collisions. 

This increased vibration represents an increase in the temperature of the metal and of your potentially 

burned hand. 

      The rate of thermal conduction depends on the properties of the substance being heated. In general, 

metals are good thermal conductors because they contain large numbers of electrons that are relatively 

free to move through the metal and so can transport energy over large distances. Therefore, in a good 

conductor such as copper, conduction takes place by means of both the vibration of atoms and the motion 

Figure 9.7: The PV diagram for an isothermal expansion of an ideal gas from an initial state to a final state. 

The curve is a hyperbola. 
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of free electrons.  Materials such as wool, cork, paper, and fiberglass are poor conductors. Gases also are 

poor conductors because the separation distance between the particles is so great.  

Conduction occurs only if there is a difference in temperature between two parts of the conducting 

medium. Consider a slab of material of thickness (𝛥𝑥) and cross-sectional area (𝐴). One face of the slab 

is at a temperature (𝑇1), and the other face is at a temperature (𝑇2  >  𝑇1) (figure 9.8). Experimentally, it 

is found that energy (𝑄) transfers in a time interval (𝛥𝑡) from 

the hotter face to the colder one. The rate (𝑃 =  𝑄/𝛥𝑡) at 

which this energy transfer occurs is found to be proportional to 

the cross-sectional area and the temperature difference 

𝛥(𝑇 = 𝑇2– 𝑇1) and inversely proportional to the thickness: 

 

𝑃 =
𝑄

∆𝑇
 𝛼 𝐴

∆𝑇

∆𝑥
 

Notice that (𝑃) has units of watts when (𝑄) is in joules 

and (𝛥𝑡) is in seconds. For a slab of infinitesimal thickness 

(∆𝑥) and temperature difference (∆𝑇), we can write the law of 

thermal conduction as 

𝑃 = 𝐾𝐴 |
∆𝑇

∆𝑥
|                                                                    (9 − 14) 

where the proportionality constant (𝐾) is the thermal conductivity of the material and |∆𝑇/∆𝑥| is the 

temperature gradient (the rate at which temperature varies with position).  

      Substances that are good thermal conductors have large thermal conductivity values, whereas good 

thermal insulators have low thermal conductivity values. Table 9-3 lists thermal conductivities for various 

substances. Notice that metals are generally better thermal conductors than nonmetals. 

Suppose a long, uniform rod of length (𝐿) is thermally insulated so that energy cannot escape by 

heat from its surface except at the ends as shown in figure 9.9. One end is in thermal contact with an energy 

reservoir at temperature (𝑇1), and the other end is in thermal contact with a reservoir at temperature 

(𝑇2   > 𝑇1) . When a steady state has been reached, the temperature at each point along the rod is constant 

in time. In this case, if we assume (𝐾) is not a function of temperature, the temperature gradient is the 

same everywhere along the rod and is 

|
∆𝑇

∆𝑥
| =

𝑇2 − 𝑇1

𝐿
 

 

Figure 9.8: Energy transfer through a 

conducting slab with a cross-sectional area 

(𝐴) and a thickness (𝛥𝑥). 
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Table 9-3: Thermal Conductivities of some substances. 

Substance Thermal Conductivity (𝑾/𝒎 . ℃) 

Matals (𝒂𝒕 𝟐𝟓 ℃)  

Aluminum 238 

Copper 397 

Gold 314 

Iron 79.5 

Lead 34.7 

Silver 427 

Nonmetals  (approximate 

values) 

 

Asbestos 0.08 

Concrete 0.8 

Diamond 2300 

Glass 0.8 

Ice 2 

Rubber 0.2 

Water 0.6 

Wood 0.08 

Gases (at 20 oC)  

Air 0.0234 

Helium 0.138 

Hydrogen 0.172 

Oxygen 0.0238 

Nitrogen 0.0234 

 

 

 

 

 

Figure 9.9: Conduction of energy through a uniform, insulated rod of length (𝐿). The opposite ends are in thermal 

contact with energy reservoirs at different temperatures. 
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Therefore, the rate of energy transfer by conduction through the rod is 

𝑃 = 𝐾𝐴 (
𝑇2 − 𝑇1

𝐿
)                                                                (9 − 15) 

For a compound slab containing several materials of thicknesses (𝐿1, 𝐿2, . . . )and thermal 

conductivities (𝐾1, 𝐾2, . . . ) the rate of energy transfer through the slab at steady state is 

𝑃 =
𝐴(𝑇2 − 𝑇1)

∑ (𝐿𝑖/𝐾𝑖)𝑖
                                                                 (9 − 16) 

where (𝑇2)  and (𝑇1) are the temperatures of the outer surfaces (which are held constant) and the 

summation is over all slabs. Example (9.4) shows how equation (9-16) results from a consideration of two 

thicknesses of materials. 

Example (9.4):  

Two slabs of thickness 𝑳𝟏 and 𝑳𝟐 and thermal conductivities 𝑲𝟏 and 𝑲𝟐 are in thermal contact with each 

other as shown in figure 9.10. The temperatures of their outer surfaces are 𝑻𝟏 and 𝑻𝟐, respectively, and 

𝑻𝟐  >  𝑻𝟏. Determine the temperature at the interface and the rate of energy transfer by conduction through 

an area A of the slabs in the steady-state condition. 

Solution: 

Use equation (9-15) to express the rate at which energy is transferred through an area (𝐴) of slab (1): 

𝑃1 = 𝐾1𝐴 (
𝑇 − 𝑇1

𝐿1
)  (1) 

Express the rate at which energy is transferred through the same area of slab (2): 

𝑃2 = 𝐾2𝐴 (
𝑇2 − 𝑇

𝐿2
)   (2) 

Set these two rates dual to represent the steady-state situation: 

𝐾1𝐴 (
𝑇 − 𝑇1

𝐿1
) = 𝐾2𝐴 (

𝑇2 − 𝑇

𝐿2
)                                                                              

Solve for (𝑇): 

𝑇 =
𝐾1𝐿2𝑇1 + 𝐾2𝐿1𝑇2

𝐾1𝐿2 + 𝐾2𝐿1
   (3)                                                                              

Substitute equation (3) into either equation (1) or equation (2): 

𝑃 =
𝐴(𝑇2 − 𝑇1)

(𝐿1/𝐾1) + (𝐿2/𝐾2)
   (4)                                                                            
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Convection 

      At one time or another, you probably have warmed your 

hands by holding them over an open flame. In this situation, the 

air directly above the flame is heated and expands. As a result, 

the density of this air decreases and the air rises. This warmed 

mass of air heats your hands as it flows by. Energy transferred 

by the movement of a heated substance is said to have been 

transferred by convection. When the movement results from 

differences in density, as with air around a fire, it is referred to 

as natural convection. Air flow at a beach is an example of 

natural convection, as is the mixing that occurs as surface water in a lake cools and sinks. When the heated 

substance is forced to move by a fan or pump, as in some hot-air and hot-water heating systems, the process 

is called forced convection.  

If it were not for convection currents, it would be very difficult to boil water. As water is heated in 

a teakettle, the lower layers are warmed first. The heated water expands and rises to the top because its 

density is lowered. At the same time, the denser, cool water at the surface sinks to the bottom of the kettle 

and is heated. The same process occurs when a room is heated by a radiator. The hot radiator warms the 

air in the lower regions of the room. The warm air expands and rises to the ceiling because of its lower 

density. The denser, cooler air from above sinks, and the continuous air current pattern shown in figure 

9.10 is established. 

Radiation 

      The third means of energy transfer we shall discuss is thermal radiation. All objects radiate 

energy continuously in the form of electromagnetic waves produced by thermal vibrations of the 

molecules. You are likely familiar with electromagnetic radiation in the form of the orange glow from an 

electric stove burner, an electric space heater, or the coils of a toaster. The rate at which an object radiates 

energy is proportional to the fourth power of its absolute temperature. Known as Stefan’s law, this behavior 

is expressed in equation form as 

       𝑃 =  𝜎𝐴𝑒𝑇4                                                                      (9 − 18)   

where (𝑃) is the power in watts of electromagnetic waves radiated from the surface of the object, (𝜎) is a 

constant equal to 5.6696 ×  10−8 𝑊/𝑚2 𝐾4, (𝐴) is the surface area of the object in square meters, (𝑒) is 

the emissivity, and (𝑇) is the surface temperature in kelvins. The value of (𝑒) can vary between zero and 

unity depending on the properties of the surface of the object. The emissivity is equal to the absorptivity, 

which is the fraction of the incoming radiation that the surface absorbs. A mirror has very low absorptivity 

Figure 9.10: Convection currents are set up 

in a room heated by a radiator. 
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because it reflects almost all incident light. Therefore, a mirror surface also has a very low emissivity. At 

the other extreme, a black surface has high absorptivity and high emissivity. An ideal absorber is defined 

as an object that absorbs all the energy incident on it, and for such an object, 𝑒 =  1. An object for which 

(𝑒 =  1) is often referred to as a black body. We shall investigate experimental and theoretical approaches 

to radiation from a black body. 

     Every second, approximately (1370 𝐽) of electromagnetic radiation from the Sun passes 

perpendicularly through each (1 𝑚2) at the top of the Earth’s atmosphere. This radiation is primarily 

visible and infrared light accompanied by a significant amount of ultraviolet radiation. Enough energy 

arrives at the surface of the Earth each day to supply all our energy needs on this planet hundreds of times 

over, if only it could be captured and used efficiently. The growth in the number of solar energy–powered 

houses built in the United States reflects the increasing efforts being made to use this abundant energy. 

What happens to the atmospheric temperature at night is another example of the effects of energy 

transfer by radiation. If there is a cloud cover above the Earth, the water vapor in the clouds absorbs part 

of the infrared radiation emitted by the Earth and re-emits it back to the surface. Consequently, temperature 

levels at the surface remain moderate. In the absence of this cloud cover, there is less in the way to prevent 

this radiation from escaping into space; therefore, the temperature decreases more on a clear night than on 

a cloudy one. 

      As an object radiates energy at a rate given by equation (9-18), it also absorbs electromagnetic 

radiation from the surroundings, which consist of other objects that radiate energy. If the latter process did 

not occur, an object would eventually radiate all its energy and its temperature would reach absolute zero. 

If an object is at a temperature (𝑇) and its surroundings are at an average temperature (𝑇𝑜), the net rate of 

energy gained or lost by the object as a result of radiation is 

𝑃𝑛𝑒𝑡 = 𝜎𝐴𝑒(𝑇4 − 𝑇𝑜
4)                                                               (9 − 19) 

When an object is in equilibrium with its surroundings, it radiates and absorbs energy at the same 

rate and its temperature remains constant. When an object is hotter than its surroundings, it radiates more 

energy than it absorbs and its temperature decreases. 

The Dewar Flask 

      The Dewar flask (Invented by Sir James Dewar (1842–1923).) is a container designed to minimize 

energy transfers by conduction, convection, and radiation. Such a container is used to store cold or hot 

liquids for long periods of time. (An insulated bottle, such as a Thermos, is a common household 

equivalent of a Dewar flask.) The standard construction (figure 9.11) consists of a double-walled Pyrex 

glass vessel with silvered walls. The space between the walls is evacuated to minimize energy transfer by 

conduction and convection. 
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The silvered surfaces minimize energy transfer by 

radiation because silver is a very good reflector and has very low 

emissivity. A further reduction in energy loss is obtained by 

reducing the size of the neck. Dewar flasks are commonly used 

to store liquid nitrogen (boiling point 77 𝐾) and liquid oxygen 

(boiling point 90 𝐾). To confine liquid helium (boiling point 

4.2 𝐾), which has a very low heat of vaporization, it is often 

necessary to use a double Dewar system in which the Dewar 

flask containing the liquid is surrounded by a second Dewar 

flask. The space between the two flasks is filled with liquid 

nitrogen. 

        Newer designs of storage containers use “superinsulation” that consists of many layers of reflecting 

material separated by fiberglass. All this material is in a vacuum, and no liquid nitrogen is needed with 

this design. 

 

  

Figure 9.11: A cross-sectional view 

of a Dewar flask, which is used to 

store hot or cold substances. 
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PROBLEMS 

1. Consider Joule’s apparatus described in figure 9.1. Each of the two masses is 𝟏. 𝟓𝟎 𝒌𝒈, and the 

tank is filled with 𝟐𝟎𝟎 𝒈 of water. What is the increase in the temperature of the water after the 

masses fall through a distance of 3 𝑚? 

2. The temperature of a silver bar rises by 𝟏𝟎 °𝑪 when it absorbs 𝟏. 𝟐𝟑 𝒌𝑱 of energy by heat. The mass 

of the bar is 𝟓𝟐𝟓 𝒈. Determine the specific heat of silver. 

3. A 𝟓𝟎 𝒈 sample of copper is at 𝟐𝟓 °𝑪. If 𝟏𝟐𝟎𝟎 𝑱 of energy is added to it by heat, what is its final 

temperature? 

4. A 𝟏. 𝟓 𝒌𝒈 iron horseshoe initially at 𝟔𝟎𝟎 °𝑪 is dropped into a bucket containing 𝟐𝟎 𝒌𝒈 of water 

at 𝟐𝟓 °𝑪. What is the final temperature? (Neglect the heat capacity of the container and assume 

that a negligible amount of water boils away.) 

5. An aluminum cup with a mass of 𝟐𝟎𝟎 𝒈 contains 𝟖𝟎𝟎 𝒈 of water in thermal equilibrium at 𝟖𝟎 °𝑪. 

The combination of cup and water is cooled uniformly so that the temperature decreases at a rate 

of 𝟏. 𝟓 °𝑪/𝒎𝒊𝒏. At what rate is energy being removed by heat? Express your answer in watts. 

6. A 𝟑 𝒈 copper penny at 𝟐𝟓 °𝑪 drops from a height of 𝟓𝟎 𝒎 to the ground. (a) If 𝟔𝟎 % of the change 

in potential energy goes into increasing the internal energy, what is its final temperature? (b) Does 

the result you obtained in (a) depend on the mass of the penny? 

7.  How much energy is required to change a 𝟒𝟎 𝒈 ice cube from ice at −𝟏𝟎 °𝑪 to steam at 𝟏𝟏𝟎 °𝑪? 

8.  A 𝟑 𝒈 lead bullet at 𝟑𝟎 °𝑪 is fired at a speed of 𝟐𝟒𝟎 𝒎/𝒔 into a large block of ice at 𝟎 °𝑪, in 

which it becomes embedded. What quantity of ice melts?  

9.  A 𝟏 𝒌𝒈 block of copper at 𝟐𝟎 °𝑪 is dropped into a large vessel of liquid nitrogen at 𝟕𝟕. 𝟑 𝑲. How 

many kilograms of nitrogen boil away by the time the copper reaches 𝟕𝟕. 𝟑 𝑲? (The specific heat 

of copper is 𝟎. 𝟎𝟗𝟐 𝒄𝒂𝒍/𝒈. °𝑪. The latent heat of vaporization of nitrogen is 𝟒𝟖 𝒄𝒂𝒍/𝒈.) 

10.  A 𝟓𝟎 𝒈 copper calorimeter contains 𝟐𝟓𝟎 𝒈 of water at 𝟐𝟎 °𝑪. How much steam must be 

condensed into the water if the final temperature of the system is to reach 𝟓𝟎 °𝑪? 

11. A glass window pane has an area of 𝟑 𝒎𝟐 and a thickness of 𝟎. 𝟔 𝒄𝒎. If the temperature difference 

between its faces is 𝟐𝟓 °𝑪, what is the rate of energy transfer by conduction through the window? 
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12.   Gas in a container is at a pressure of 𝟏. 𝟓𝟎 𝒂𝒕𝒎 and a volume of 𝟒. 𝟎𝟎 𝒎𝟑. What is the work 

done by the gas (a) if it expands at constant pressure to twice its initial volume? (b) If it is 

compressed at constant pressure to one quarter of its initial volume? 

13.   An ideal gas is enclosed in a cylinder with a movable piston on top. The piston has a mass of 

𝟖𝟎𝟎𝟎 𝒈 and an area of 𝟓 𝒄𝒎𝟐 and is free to slide up and down, keeping the pressure of the gas 

constant. How much work is done as the temperature of 𝟎. 𝟐 𝒎𝒐𝒍 of the gas is raised from 𝟐𝟎 °𝑪 

to 𝟑𝟎𝟎 °𝑪? 
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CHAPTER (10) 

HEAT ENGINES, ENTROPY AND THE SECOND LAW OF 

THERMODYNAMICS 

10.1 Introduction 

 Although the first law of thermodynamics is very important, it makes no distinction between 

processes that occur spontaneously and those that do not. Only certain types of energy conversion and 

energy transfer processes actually take place in nature, however. The second law of thermodynamic 

establishes which processes do and do not occur. The following are examples of processes that do not 

violate the first law of thermodynamics if they proceed in either direction, but are observed in reality to 

proceed in only one direction: 

• When two objects at different temperatures are placed in thermal contact with each other, the net transfer 

of energy by heat is always from the warmer object to the cooler object, never from the cooler to the 

warmer. 

• A rubber ball dropped to the ground bounces several times and eventually comes to rest, but a ball lying 

on the ground never gathers internal energy from the ground and begins bouncing on its own. 

• An oscillating pendulum eventually comes to rest because of collisions with air molecules and friction 

at the point of suspension. The mechanical energy of the system is converted to internal energy in the air, 

the pendulum, and the suspension; the reverse conversion of energy never occurs. 

All these processes are irreversible; that is, they are processes that occur naturally in one direction 

only. No irreversible process has ever been observed to run backward. If it were to do so, it would violate 

the second law of thermodynamics  

10.2 Heat Engines and the Second Law of Thermodynamics 

      A heat engine is a device that takes in energy by heat and operating in a cyclic process, expels a 

fraction of that energy by means of work. For instance, in a typical process by which a power plant 

produces electricity, a fuel such as coal is burned and the high-temperature gases produced are used to 

convert liquid water to steam. This steam is directed at the blades of a turbine, setting it into rotation. The 

mechanical energy associated with this rotation is used to drive an electric generator.  

      A heat engine carries some working substance through a cyclic process during which (1) the 

working substance absorbs energy by heat from a high-temperature energy reservoir, (2) work is done by 

the engine, and (3) energy is expelled by heat to a lower-temperature reservoir. As an example, consider 

the operation of a steam engine, which uses water as the working substance. The water in a boiler absorbs 
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energy from burning fuel and evaporates to steam, which then does work by expanding against a piston. 

After the steam cools and condenses, the liquid water produced returns to the boiler and the cycle repeats. 

      It is useful to represent a heat engine schematically as in figure 10.1. The engine absorbs a quantity 

of energy |𝑄ℎ|  from the hot reservoir. For the mathematical discussion of heat engines, we use absolute 

values to make all energy transfers by heat positive, and the direction of transfer is indicated with an 

explicit positive or negative sign. The engine does work (𝑊𝑒𝑛𝑔) (so that negative work (𝑊 =  2𝑊𝑒𝑛𝑔) is 

done on the engine) and then gives up a quantity of energy |𝑄𝑐| to the cold reservoir. Because the working 

substance goes through a cycle, its initial and final internal energies are equal: (𝛥𝐸𝑖𝑛𝑡  =  0). Hence, from 

the first law of thermodynamics, (𝛥𝐸𝑖𝑛𝑡  =  𝑄 +  𝑊 =  𝑄 −  𝑊𝑒𝑛𝑔  =  0), and the net work (𝑊𝑒𝑛𝑔) done 

by a heat engine is equal to the net energy (𝑄𝑛𝑒𝑡) transferred to it. As you can see from figure 10.2,               

𝑄𝑛𝑒𝑡  = |𝑄ℎ|   −  |𝑄𝑐|; therefore, 

       𝑊𝑒𝑛𝑔  =  |𝑄ℎ|  − |𝑄𝑐|                                                            (10 − 1) 

     The thermal efficiency (𝑒) of a heat engine is defined as the ratio of the net work done by the engine 

during one cycle to the energy input at the higher temperature during the cycle: 

𝑒 =
𝑊𝑒𝑛𝑔

|𝑄ℎ|
=

|𝑄ℎ| − |𝑄𝑐|

|𝑄ℎ|
= 1 −

|𝑄𝑐|

|𝑄ℎ|
                                                    (10 − 2) 

      You can think of the efficiency as the ratio of what you gain (work) to what you give (energy 

transfer at the higher temperature). In practice, all heat engines expel only a fraction of the input energy 

(𝑄ℎ) by mechanical work; consequently, their efficiency is always less than 100%. For example, a good 

automobile engine has an efficiency of about 20%, and diesel engines have efficiencies ranging from 35% 

to 40%. Equation (10-2) shows that a heat engine has 100% efficiency (𝑒 =  1) only if |𝑄𝑐|  =  0, that 

is, if no energy is expelled to the cold reservoir. In other words, a heat engine with perfect efficiency would 

have to expel all the input energy by work. Because efficiencies of real engines are well below 100 %, the 

Kelvin–Planck form of the second law of thermodynamics states the following: 

It is impossible to construct a heat engine that, operating in a cycle, produces no effect other than 

the input of energy by heat from a reservoir and the performance of an equal amount of work. 

This statement of the second law means that during the operation of a heat engine, (𝑊𝑒𝑛𝑔) can 

never be equal to |𝑄ℎ| or, alternatively, that some energy |𝑄𝑐| must be rejected to the environment. Every 

heat engine must have some energy exhaust. Figure 10.2 is a schematic diagram of the impossible “perfect” 

heat engine. 
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Example (10.1):  

An engine transfers 𝟐 × 𝟏𝟎𝟑 𝑱 of energy from a hot reservoir during a cycle and transfers 𝟏. 𝟓 × 𝟏𝟎𝟑 𝑱 as 

exhaust to a cold reservoir. (a) Find the efficiency of the engine. 

Solution: 

From equation (10-2): 

𝑒 = 1 −
|𝑄𝑐|

|𝑄ℎ|
= 1 −

1.5 × 103𝑗

2 × 103𝑗
= 0.25 𝑜𝑟 25%  

Find the work done by the engine by taking the difference between the input and output energies: 

     𝑊𝑒𝑛𝑔  =  |𝑄ℎ|  −  |𝑄𝑐|  =  2.00 × 𝟏𝟎𝟑 𝐽 −  1.50 × 𝟏𝟎𝟑 𝐽 =  5.0 × 𝟏𝟎𝟐𝐽 

 

(b) How much work does this engine do in one cycle? 

Solution: 

If you were told that the engine operates at 𝟐𝟎𝟎𝟎 𝒓𝒑𝒎 (revolutions per minute), however, you could relate 

this rate to the period of rotation 𝑻 of the mechanism of the engine. Assuming there is one thermodynamic 

cycle per revolution, the power is 

𝑃 =
𝑊𝑒𝑛𝑔

𝑇
=

5.0×102𝐽

(
1

2000 𝑚𝑖𝑛
)

(
1 𝑚𝑖𝑛

60 𝑠
) = 1.7 × 104 w 

Figure 10.2: Schematic diagram 

of a heat engine that takes in 

energy from a hot reservoir and 

does an equivalent amount of 

work. It is impossible to construct 

such a perfect engine. 

Figure 10.1: Schematic representation 

of a heat engine. 
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10.3 Reversible and Irreversible Processes 

      To discuss a theoretical heat engine, we must first examine the meaning of reversible and 

irreversible processes. In a reversible process, the system undergoing the process can be returned to its 

initial conditions along the same path on a 𝑃𝑉 diagram, and every point along this path is an equilibrium 

state. A process that does not satisfy these requirements is irreversible. 

      All natural processes are known to be irreversible. Consider a gas in a thermally insulated container 

as shown in figure 10.3. A membrane separates the gas from a vacuum. When the membrane is punctured, 

the gas expands freely into the vacuum. As a result of the puncture, the system has changed because it 

occupies a greater volume after the expansion. Because the gas does not exert a force through a 

displacement, it does no work on the surroundings as it expands. In addition, no energy is transferred to 

or from the gas by heat because the container is insulated from its surroundings. Therefore, in this adiabatic 

process, the system has changed but the surroundings have not. For this process to be reversible, we must 

return the gas to its original volume and temperature without changing the surroundings. Imagine trying 

to reverse the process by compressing the gas to its original volume. To do so, we fit the container with a 

piston and use an engine to force the piston inward. During this process, the surroundings change because 

work is being done by an outside agent on the system. In addition, the system changes because the 

compression increases the temperature of the gas. The temperature of the gas can be lowered by allowing 

it to come into contact with an external energy reservoir. Although this step returns the gas to its original 

conditions, the surroundings are again affected because energy is being added to the surroundings from 

the gas. If this energy could be used to drive the engine that compressed the gas, the net energy transfer to 

the surroundings would be zero. In this way, the system and its surroundings could be returned to their 

initial conditions and we could identify the process as reversible. The Kelvin–Planck statement of the 

second law, however, specifies that the energy removed from the gas to return the temperature to its 

original value cannot be completely converted to mechanical energy in the form of the work done by the 

engine in compressing the gas. Therefore, we must conclude that the process is irreversible. 

We could also argue that the adiabatic free expansion is irreversible by relying 

on the portion of the definition of a reversible process that refers to equilibrium states. For example, during 

the sudden expansion, significant variations in pressure occur throughout the gas. The 𝑃𝑉 diagram for an 

adiabatic free expansion would show the initial and final conditions as points, but these points would not 

be connected by a path. Therefore, because the intermediate conditions between the initial and final states 

are not equilibrium states, the process is irreversible. 
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 Although all real processes are irreversible, some are almost reversible. If a real process occurs 

very slowly such that the system is always very nearly in an equilibrium state, the process can be 

approximated as being reversible. Suppose a gas is compressed isothermally in a piston–cylinder 

arrangement in which the gas is in thermal contact with an energy reservoir and we continuously transfer 

just enough energy from the gas to the reservoir to keep the temperature constant. For example, imagine 

that the gas is compressed very slowly by dropping grains of sand onto a frictionless piston as shown in 

figure 10.4. As each grain lands on the piston and compresses the gas a small amount, the system deviates 

from an equilibrium state, but it is so close to one that it achieves a new equilibrium state in a relatively 

short time interval. Each grain added represents a change to a new equilibrium state, but the differences 

between states are so small that the entire process can be approximated as occurring through continuous 

equilibrium states. The process can be reversed by slowly removing grains from the piston. 

      A general characteristic of a reversible process is that no dissipative effects (such as turbulence or 

friction) that convert mechanical energy to internal energy can be present. Such effects can be impossible 

to eliminate completely. Hence, it is not surprising that real processes in nature are irreversible. 

10.4 The Carnot Engine 

      In 1824, a French engineer named Sadi Carnot described a theoretical engine, now called a Carnot 

engine, that is of great importance from both practical and theoretical viewpoints. He showed that a heat 

engine operating in an ideal, reversible cycle called a Carnot cycle between two energy reservoirs is the 

most efficient engine possible. Such an ideal engine establishes an upper limit on the efficiencies of all 

other engines. That is, the net work done by a working substance taken through the Carnot cycle is the 

greatest amount of work possible for a given amount of energy supplied to the substance at the higher 

temperature. Carnot’s theorem can be stated as follows: 

Figure 10.4: A method for compressing a 

gas in a reversible isothermal process 
Figure 10.3: Adiabatic free 

expansion of a gas. 
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No real heat engine operating between two energy reservoirs can be more efficient than a Carnot engine 

operating between the same two reservoirs.  

      To prove the validity of this theorem, imagine two heat engines operating between the same energy 

reservoirs. One is a Carnot engine with efficiency (𝑒𝐶), and the other is an engine with efficiency 𝑒, where 

we assume (𝑒 >  𝑒𝐶). Because the cycle in the Carnot engine is reversible, the engine can operate in 

reverse as a refrigerator. The more efficient engine is used to drive the Carnot engine as a Carnot 

refrigerator. The output by work of the more efficient engine is matched to the input by work of the Carnot 

refrigerator. For the combination of the engine and refrigerator, no exchange by work with the 

surroundings occurs. Because we have assumed the engine is more efficient than the refrigerator, the net 

result of the combination is a transfer of energy from the cold to the hot reservoir without work being done 

on the combination. According to the Clausius statement of the second law, this process is impossible. 

Hence, the assumption that (𝑒 >  𝑒𝐶) must be false.  

      All real engines are less efficient 

than the Carnot engine because they do 

not operate through a reversible cycle. 

The efficiency of a real engine is further 

reduced by such practical difficulties as 

friction and energy losses by conduction. 

To describe the Carnot cycle taking place 

between temperatures (𝑇𝑐)  and (𝑇ℎ), let’s 

assume the working substance is an ideal 

gas contained in a cylinder fitted with a 

movable piston at one end. The cylinder’s 

walls and the piston are thermally 

nonconducting. Four stages of the Carnot 

cycle are shown in figure 10.5, and the 𝑃𝑉 

diagram for the cycle is shown in figure 

10.5. The Carnot cycle consists of two 

adiabatic processes and two isothermal processes, all reversible: 

1. Process  𝐴 → 𝐵  (figure 10.5a) is an isothermal expansion at temperature (𝑇ℎ). The gas is placed 

in thermal contact with an energy reservoir at temperature (𝑇ℎ). During the expansion, the gas 

absorbs energy |𝑄ℎ| from the reservoir through the base of the cylinder and does work (𝑊𝐴𝐵) in 

raising the piston. 

Figure 10.5: The Carnot cycle. The letters A, B, 

C, and D refer to the states of the gas shown in 

Active.  
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2. In process (𝐵 → 𝐶) (figure 10.5b), the base of the cylinder is replaced by a thermally 

nonconducting wall and the gas expands adiabatically; that is, no energy enters or leaves the system 

by heat. During the expansion, the temperature of the gas decreases from (𝑇ℎ) to (𝑇𝑐) and the gas 

does work  𝑊𝐵𝐶 in raising the piston  

3. In process (𝐶 → 𝐷) (figure 10.5c), the gas is placed in thermal contact with an energy reservoir at 

temperature 𝑇𝑐 and is compressed isothermally at temperature (𝑇𝑐). During this time, the gas expels 

energy |𝑄𝑐| to the reservoir and the work done by the piston on the gas is  𝑊𝐶𝐷. 

4. In the final process (𝐷 → 𝐴) (figure 10.5d), the base of the cylinder is replaced by a nonconducting 

wall and the gas is compressed adiabatically. The temperature of the gas increases to (𝑇ℎ), and the 

work done by the piston on the gas is (𝑊𝐷𝐴).  

The thermal efficiency of the engine is given by equation (10-2): 

𝑒 = 1 −
|𝑄𝑐|

|𝑄ℎ|
 

For a Carnot engine, the following relationship between the thermal energy transfers and the absolute 

temperatures can be derived: 

|𝑄𝑐|

|𝑄ℎ|
=

𝑇𝑐

𝑇ℎ
                                                                      (10 − 5) 

Hence, the thermal efficiency of a Carnot engine is 

𝑒𝐶 = 1 −
𝑇𝑐

𝑇ℎ
                                                                  (10 − 6) 

Efficiency of a Carnot engine 

      This result indicates that all Carnot 

engines operating between the same two 

temperatures have the same efficiency (For the 

processes in the Carnot cycle to be reversible, 

they must be carried out infinitesimally slowly. 

Therefore, although the Carnot engine is the most 

efficient engine possible, it has zero power output 

because it takes an infinite time interval to 

complete one cycle! For a real engine, the short 

time interval for each cycle results in the working 

substance reaching a high temperature lower than 

that of the hot reservoir and a low temperature higher than that of the cold reservoir).  

Figure 10.6: PV diagram for the Carnot cycle. The net 

work done (𝑊𝑒𝑛𝑔) equals the net energy transferred into 

the Carnot engine in one cycle, |𝑄ℎ| −  |𝑄𝑐|. 
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Equation (10-6) can be applied to any working substance operating in a Carnot cycle between two 

energy reservoirs. According to this equation, the efficiency is zero if (𝑇𝑐 =  𝑇ℎ), as one would expect. 

The efficiency increases as (𝑇𝑐) is lowered and (𝑇ℎ) is raised. The efficiency can be unity (100 %), 

however, only if (𝑇𝑐 =  0 𝐾). Such reservoirs are not available; therefore, the maximum efficiency is 

always less than 100%. In most practical cases, (𝑇𝑐) is near room temperature, which is about 300 𝐾. 

      Therefore, one usually strives to increase the efficiency by raising (𝑇ℎ). Theoretically, a Carnot-

cycle heat engine run in reverse constitutes the most effective heat pump possible, and it determines the 

maximum (𝐶𝑂𝑃) for a given combination of hot and cold reservoir temperatures. Using equations (10-1) 

and (10-4), we see that the maximum (𝐶𝑂𝑃) for a heat pump in its heating mode is 

𝐶𝑂𝑃𝑐(ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑚𝑜𝑑𝑒) =
|𝑄ℎ|

𝑊
 

=
|𝑄ℎ|

|𝑄ℎ| − |𝑄𝑐|
=

1

1 −
|𝑄𝑐|
|𝑄ℎ|

=
1

1 −
𝑇𝑐

𝑇ℎ

=
𝑇ℎ

𝑇ℎ − 𝑇𝑐
 

 The Carnot (𝐶𝑂𝑃) for a heat pump in the cooling mode is 

𝐶𝑂𝑃𝑐(𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑚𝑜𝑑𝑒) =
𝑇𝑐

𝑇ℎ − 𝑇𝑐
 

      As the difference between the temperatures of the two reservoirs approaches zero in this 

expression, the theoretical (𝐶𝑂𝑃) approaches infinity. In practice, the low temperature of the cooling coils 

and the high temperature at the compressor limit the (𝐶𝑂𝑃) to values below 10. 

10.5 Entropy 

      The zeroth law of thermodynamics involves the concept of temperature, and the first law involves 

the concept of internal energy. Temperature and internal energy are both state variables; that is, the value 

of each depends only on the thermodynamic state of a system, not on the process that brought it to that 

state. Another state variable this one related to the second law of thermodynamics is entropy (𝑆).  

           Entropy was originally formulated as a useful concept in thermodynamics. Its importance grew, 

however, as the field of statistical mechanics developed because the analytical techniques of statistical 

mechanics provide an alternative means of interpreting entropy and a more global significance to the 

concept. In statistical mechanics, the behavior of a substance is described in terms of the statistical 

behavior of its atoms and molecules. An important finding in these studies is that isolated systems tend 

toward disorder, and entropy is a measure of this disorder. For example, consider the molecules of a gas 

in the air in your room. If half the gas molecules had velocity vectors of equal magnitude directed toward 

the left and the other half had velocity vectors of the same magnitude directed toward the right, the situation 
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would be very ordered. Such a situation is extremely unlikely, however. If you could view the molecules, 

you would see that they move haphazardly in all directions, bumping into one another, changing speed 

upon collision, some going fast and others going slowly. This situation is highly disordered. 

      The cause of the tendency of an isolated system toward disorder is easily explained. To do so, we 

distinguish between microstates and macrostates of a system. A microstate is a particular description of 

the properties of the individual molecules of the system. For example, the description we just gave of the 

velocity vectors of the air molecules in your room being very ordered refers to a particular microstate, and 

the more likely likely haphazard motion is another microstate—one 

that represents disorder. A macrostate is a description of the conditions of the system from a macroscopic 

point of view and makes use of macroscopic variables such as pressure, density, and temperature. For 

example, in both of the microstates described for the air molecules in your room, the air molecules are 

distributed uniformly throughout the volume of the room; this uniform density distribution is a macrostate. 

We could not distinguish between our two microstates by making a macroscopic measurement—both 

microstates would appear to be the same macroscopically, and the two macrostates corresponding to these 

microstates are equivalent.  

      For any given macrostate of the system, a number of microstates are possible, or accessible. Among 

these microstates, it is assumed that all are equally probable. However, when all possible microstates are 

examined, it is found that far more of them are disordered than are ordered. Because all of the microstates 

are equally probable, it is highly likely that the actual macrostate is one resulting from one of the highly 

disordered microstates, simply because there are many more of them. Similarly, the probability of a 

macrostate’s forming from disordered microstates is greater than the probability of a macrostate’s forming 

from ordered microstates.  

      All physical processes that take place in a system tend to cause the system and its surroundings to 

move toward more probable macrostates. The more probable macrostate is always one of greater disorder. 

If we consider a system and its surroundings to include the entire Universe, then the Universe is always 

moving toward a macrostate corresponding to greater disorder. Because entropy is a measure of disorder, 

an alternative way of stating this is the entropy of the Universe increases in all real processes. This is yet 

another statement of the second law of thermodynamics that can be shown to be equivalent to the Kelvin–

Planck and Clausius statements. 

            The original formulation of entropy in thermodynamics involves the transfer of energy by heat 

during a reversible process. Consider any infinitesimal process in which a system changes from one 

equilibrium state to another. If (𝑑𝑄𝑟) is the amount of energy transferred by heat when the system follows 
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a reversible path between the states, the change in entropy (𝑑𝑆) is equal to this amount of energy for the 

reversible process divided by the absolute temperature of the system: 

𝑑𝑆 =
𝑑𝑄𝑟

𝑇
                                                                               (10 − 8) 

We have assumed the temperature is constant because the process is infinitesimal. Because entropy 

is a state variable, the change in entropy during a process depends only on the endpoints and therefore is 

independent of the actual path followed. Consequently, the entropy change for an irreversible process can 

be determined by calculating the entropy change for a reversible process that connects the same initial and 

final states. 

      The subscript (𝑟) on the quantity (𝑑𝑄𝑟) is a reminder that the transferred energy is to be measured 

along a reversible path even though the system may actually have followed some irreversible path. When 

energy is absorbed by the system, (𝑑𝑄𝑟) is positive and the entropy of the system increases. When energy 

is expelled by the system, (𝑑𝑄𝑟) is negative and the entropy of the system decreases. Notice that equation. 

(10-8) does not define entropy but rather the change in entropy. Hence, the meaningful quantity in 

describing a process is the change in entropy. 

       To calculate the change in entropy for a finite process, first recognize that (𝑇) is generally not 

constant during the process. Therefore, we must integrate equation (10-8): 

       ∆𝑆 = ∫ 𝑑𝑆
𝑓

𝑖
= ∫

𝑑𝑄𝑟

𝑇

𝑓

𝑖
                                                                (10 − 9)                                                                                    

As with an infinitesimal process, the change in entropy (∆𝑆) of a system going from one state to 

another has the same value for all paths connecting the two states. That is, the finite change in entropy 

(∆𝑆) of a system depends only on the properties of the initial and final equilibrium states. Therefore, we 

are free to choose a particular reversible path over which to evaluate the entropy in place of the actual path 

as long as the initial and final states are the same for both paths.  

      Let’s consider the changes in entropy that occur in a Carnot heat engine that operates between the 

temperatures (𝑇𝑐) and (𝑇ℎ). In one cycle, the engine takes in energy |𝑄ℎ| from the hot reservoir and expels 

energy |𝑄𝑐| to the cold reservoir. These energy transfers occur only during the isothermal portions of the 

Carnot cycle; therefore, the constant temperature can be brought out in front of the integral sign in equation 

(10-9). The integral then simply has the value of the total amount of energy transferred by heat. Therefore, 

the total change in entropy for one cycle is 

∆𝑆 =
|𝑄ℎ|

𝑇ℎ
−

|𝑄𝑐|

𝑇𝑐
 

where the minus sign represents that energy is leaving the engine. In example (10), we showed that for a 

Carnot engine,  
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|𝑄𝑐|

|𝑄ℎ|
−

𝑇ℎ

𝑇𝑐
 

Using this result in the previous expression for (𝛥𝑆), we find that the total change in entropy for a Carnot 

engine operating in a cycle is zero: 

𝛥𝑆 =  0 

      Now consider a system taken through an arbitrary (non-Carnot) reversible cycle. Because entropy 

is a state variable and hence depends only on the properties of a given equilibrium state we conclude that 

(𝛥𝑆 =  0) for any reversible cycle. In general, we can write this condition as 

  ∮
𝑑𝑄𝑟

𝑇
= 0 (reversible cycle)                                                       (10 − 10)    

where the symbol (𝑟) indicates that the integration is over a closed path.  

10.6 Entropy and the Second Law 

      By definition, a calculation of the change in entropy for a system requires information about a 

reversible path connecting the initial and final equilibrium states. To calculate changes in entropy for real 

(irreversible) processes, remember that entropy (like internal energy) depends only on the state of the 

system. That is, entropy is a state variable, and the change in entropy depends only on the initial and final 

states. 

      You can calculate the entropy change in some irreversible process between two equilibrium states 

by devising a reversible process (or series of reversible processes) between the same two states and 

computing (∆𝑆 = ∮
𝑑𝑄𝑟

𝑇
) for the reversible process. In irreversible processes, it is important to distinguish 

between (𝑄), the actual energy transfer in the process, and (𝑄𝑟), the energy that would have been 

transferred by heat along a reversible path. Only (𝑄𝑟) is the correct value to be used in calculating the 

entropy change. 

      If we consider a system and its surroundings to include the entire Universe, the Universe is always 

moving toward a higher-probability macrostate, corresponding to greater disorder. Because entropy is a 

measure of disorder, an alternative way of stating this behavior is as follows:  

The entropy of the Universe increases in all real processes. 

      This statement is yet another wording of the second law of thermodynamics that can be shown to 

be equivalent to the Kelvin-Planck and Clausius statements.   

      When dealing with a system that is not isolated from its surroundings, remember that the increase 

in entropy described in the second law is that of the system and its surroundings. When a system and its 

surroundings interact in an irreversible process, the increase in entropy of one is greater than the decrease 
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in entropy of the other. Hence, the change in entropy of the Universe must be greater than zero for an 

irreversible process and equal to zero for a reversible process. Ultimately, because real processes are 

irreversible, the entropy of the Universe should increase steadily and eventually reach a maximum value. 

At this value, the Universe will be in a state of uniform temperature and density. All physical, chemical, 

and biological processes will have ceased at this time because a state of perfect disorder implies that no 

energy is available for doing work. This gloomy state of affairs is sometimes referred to as the heat death 

of the Universe. 

Entropy Change in Thermal Conduction 

      Let’s now consider a system consisting of a hot reservoir and a cold reservoir that are in thermal 

contact with each other and isolated from the rest of the Universe. A process occurs during which energy 

(𝑄) is transferred by heat from the hot reservoir at temperature (𝑇ℎ) to the cold reservoir at temperature 

(𝑇𝑐). The process as described is irreversible (energy would not spontaneously flow from cold to hot), so 

we must find an equivalent reversible process. Because the temperature of a reservoir does not change 

during the process, we can replace the real process for each reservoir with a reversible, isothermal process 

in which the same amount of energy is transferred by heat. Consequently, for a reservoir, the entropy 

change does not depend on whether the process is reversible or irreversible. 

         Because the cold reservoir absorbs energy (𝑄), its entropy increases by (𝑄/𝑇𝑐). At the same time, 

the hot reservoir loses energy (𝑄), so its entropy change is (−𝑄/𝑇ℎ). Because (𝑇ℎ > 𝑇𝑐), the increase in 

entropy of the cold reservoir is greater than the decrease in entropy of the hot reservoir. Therefore, the 

change in entropy of the system (and of the Universe) is greater than zero: 

∆𝑆𝑈 =
𝑄

𝑇𝑐
+

−𝑄

𝑇ℎ
> 0 

      Suppose energy were to transfer spontaneously from a cold object to a hot object, in violation of 

the second law. This impossible energy transfer can be described in terms of disorder. Before the transfer, 

a certain degree of order is associated with the different temperatures of the objects. The hot object’s 

molecules have a higher average energy than the cold object’s molecules. If energy spontaneously transfers 

from the cold object to the hot object, the cold object becomes colder over a time interval and the hot 

object becomes hotter. The difference in average molecular energy becomes even greater, which would 

represent an increase in order for the system and a violation of the second law. 

      In comparison, the process that does occur naturally is the transfer of energy from the hot object 

to the cold object. In this process, the difference in average molecular energy decreases, which represents 

a more random distribution of energy and an increase in disorder. 
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PROBLEMS 

1. An engine absorbs 𝟏. 𝟕 𝒌𝑱 from a hot reservoir at 𝟐𝟕𝟕 °𝑪 and expels 𝟏. 𝟐 𝒌𝑱 to a cold reservoir at 

𝟐𝟕 °𝑪 in each cycle. (a) What is the engine’s efficiency? (b) How much work is done by the engine 

in each cycle? (c) What is the power output of the engine if each cycle lasts 𝟎. 𝟑 𝒔? 

2. The work done by an engine equals one-fourth the energy it absorbs from a reservoir. (a) What is 

its thermal efficiency? (b) What fraction of the energy absorbed is expelled to the cold reservoir? 

3. A heat engine takes in 𝟑𝟔𝟎 𝑱 of energy from a hot reservoir and performs 𝟐𝟓 𝑱 of work in each 

cycle. Find (a) the efficiency of the engine and (b) the energy expelled to the cold reservoir in each 

cycle. 

4. A particular heat engine has a mechanical power output of 𝟓 𝒌𝑾 and an efficiency of 𝟐𝟓%. The 

engine expels 𝟖 × 𝟏𝟎𝟑 𝑱 of exhaust energy in each cycle. Find (a) the energy taken in during each 

cycle and (b) the time interval for each cycle. 

5. Suppose a heat engine is connected to two energy reservoirs, one a pool of molten aluminum 

(𝟔𝟔𝟎 °𝑪) and the other a block of solid mercury (𝟐𝟑𝟖. 𝟗 °𝑪). The engine runs by freezing 𝟏 𝒈 of 

aluminum and melting 𝟏𝟓 𝒈 of mercury during each cycle. The heat of fusion of aluminum is 

𝟑. 𝟗𝟕 × 𝟏𝟎𝟓 𝑱/𝒌𝒈; the heat of fusion of mercury is 𝟏. 𝟏𝟖 × 𝟏𝟎𝟒 𝑱/𝒌𝒈. What is the efficiency of 

this engine? 

6. During each cycle, a refrigerator ejects 𝟔𝟐𝟓 𝒌𝑱 of energy to a high-temperature reservoir and takes 

in 𝟓𝟓𝟎 𝒌𝑱 of energy from a low-temperature reservoir. Determine (a) the work done on the 

refrigerant in each cycle and (b) the coefficient of performance of the refrigerator. 

7.  One of the most efficient heat engines ever built is a coal fired steam turbine in the Ohio River 

valley, operating between 𝟏𝟖𝟕𝟎 °𝑪 and 𝟒𝟑𝟎 °𝑪. (a) What is its maximum theoretical efficiency? 

(b) The actual efficiency of the engine is 𝟒𝟐%. How much mechanical power does the engine 

deliver if it absorbs 𝟏. 𝟒 × 𝟏𝟎𝟓 𝑱 of energy each second from its hot reservoir? 

8.  A heat engine operates between a reservoir at 𝟐𝟓 °𝑪 and one at 𝟑𝟕𝟓 °𝑪. What is the maximum 

efficiency possible for this engine? 
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9.  A Carnot engine has a power output of 𝟏𝟓𝟎 𝒌𝑾. The engine operates between two reservoirs at 

𝟐𝟎 °𝑪 and 𝟓𝟎𝟎 °𝑪. (a) How much energy enters the engine by heat per hour? (b) How much energy 

is exhausted by heat per hour? 

10.  A Carnot engine has a power output 𝑷. The engine operates between two reservoirs at temperature 

𝑻𝒄 and 𝑻𝒉. (a) How much energy enters the engine by heat in a time interval 𝜟𝒕?    (b) How much 

energy is exhausted by heat in the time interval 𝜟𝒕?  (c) What is the coefficient of performance of 

a refrigerator that operates with Carnot efficiency between temperatures 𝟐𝟑 °𝑪 and 𝟏𝟐𝟕 °𝑪? 

11.  A heat engine is being designed to have a Carnot efficiency of 𝟔𝟓 % when operating between two 

energy reservoirs. (a) If the temperature of the cold reservoir is 𝟐𝟎 °𝑪, what must be the 

temperature of the hot reservoir? (b) Can the actual efficiency of the engine be equal to 𝟔𝟓 %? 

Explain. 

12.  What is the maximum possible coefficient of performance of a heat pump that brings energy from 

outdoors at 𝟐𝟑 °𝑪 into a 𝟐𝟐 °𝑪 house? Note: The work done to run the heat pump is also available 

to warm the house. 

13.  How much work does an ideal Carnot refrigerator require to remove 𝟏 𝑱 of energy from liquid 

helium at 𝟒 𝑲 and expel this energy to a room-temperature (𝟐𝟗𝟑 𝑲) environment? 

14.  If a 𝟑𝟓 %-efficient Carnot heat engine is run in reverse so as to form a refrigerator (figure 10.3), 

what would be this refrigerator’s coefficient of performance? 

 

15.  A Carnot heat engine operates between temperatures 𝑻𝒉 and 𝑻𝒄. (a) If 𝑻𝒉  =  𝟓𝟎𝟎 K and            

𝑻𝒄  =  𝟑𝟓𝟎 𝑲, what is the efficiency of the engine? (b) What is the change in its efficiency for each 

degree of increase in 𝑻𝒉 above 𝟓𝟎𝟎 𝑲? (c) What is the change in its efficiency for each degree of 

change in 𝑻𝒄? (d) Does the answer to part (c) depend on 𝑻𝒄? Explain. 
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