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CHAPTER 1 

 

 

 

 
 

A brief study for geometric representation of second order algebraic equation of two 

variables in xy-plane  ( Cartesian coordinates ) introduced in this chapter . 

First section deals with general form for equation of a circle in Cartesian coordinates  

(xy-plane ) , and the next sections deals with equations of conic sections in general and special 

forms also in xy-plane .  

 

A second order algebraic equation of  two variables in xy-plane  has a general form : 

 
 

                
 

 
Where at least one  of  the coefficient A , B , and C not equal zero.  

 

The above formula can be firstly simplified by choosing  0B   to get the form  

 
 

                      (1.0)     
 

The  coefficient of equation (1.0) play an important role in the graph shape ( circle , 

parabola , ellipse , hyperbola ) as discussed later , depends mainly on the values and  the signs 

of these coefficients  .  

Equation (1.1) is called the general second order equation form for graph.  

The coefficient types and graphs can be summarized as follow: 

 
 

                
 

 

 
 
 

 
Now a brief study for each graph will be discussed according to the coefficient constants   

A , C , D   and  E . 

 

0FEyDxCyBxyAx 22   

0FEyDxCyAx 22   

If 0CA   with  same  sign , then (6.0) represent a 

circle   

If CA   , then (6.0) represent a a conic section : with  

  **  0A   or  0C    is a parabola . 

     **  0CA   with  same  sign  ellipse .  

        **  0A,  0A   with  different  sign  hyperbola . 

 

GENERAL FORM   OF A  GRAPH    FOR 

EQUATION OF SECOND ORDER ( IN PLANE ) 
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I-   Graph Of  A  Circle  In  Cartesian Coordinates  

 A Circle is a plane curve consisting of  the set of all points at a given fixed distance  ( 

called the radius ) from a given fixed point ( called the center ) . If   0r    is the radius and 

)q,p( is the center , and if )y,x( is arbitrary point on the circle ( see fig. 1.1) , then by using the 

distance formula we can write the defining condition as :  

r)qy()px( 22    

Or  

                                                                                                    (1.1) 

 

 

Equation (1.1) represent  equation of the circle in standard form  of center )q, p(  and 

radius  r  (see fig 1.1).  

 

If  the  center of the circle  be )0, 0(     then equation (1.1) simplify to the form  
 

 
                       (1.2) 

          

 

Which represent the equation of a circle in its standard form has   a center )0, 0( and a 

radius r  ( see fig.1.2 ) . 
 

By squaring the terms on the left of (1.1) and re-arranging , this equation  can be 

written in the form :  
                    

                                                                                                                          (1.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)q , p (  

fig (1.1) 

r  

fig (1.2) 

 

 

O
)0 , 0 (

 x 

y 

r  

y 

x 

    222
rbyax   

222 ryx   

0FEyDxyx 22   
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N O T E : 

By completing the square on the x   and y  terms , any equation of form (1.3) can be 

written in the form (1.1) , therefore  ;  as a result of the fact the constant 2r  of  (1.1)  classify the 

following  : 

**   If  : 0r2    ( 1.1 )  represent equation of a circle . 

   **  If   : 0r2     ( 1.1 )  represent equation of a single point . 

      **  If   : 0r2     ( 1.1 )  represent the empty set  
 

Example :1 

   Find the graph type represent the equation :  027y3x3 22   . 

Solution: 

 The above equation  can be re-written as  
222 3yx   which apply the standard form 

(1.2)  i.e.,  

Represent a circle  ,  as  coefficient of 2x  coefficient 2y   

Has a center   ) 0 , 0(  , as coefficient of 0x     ,  coefficient 0y   

Has a radius   3r    , as  the given equation can represented by : 222 3yx   

i.e. the graph represent a circle with center ) 0 , 0(  and radius 3r   . $$ 

§§§§§§§§§§§§ 

Example :2 

Draw the graph of  the equation :  020y4x2yx 22   . 

Solution: 

     Compare the given equation with  

equation (1.2.a) we get that it represent  

a circle with center b), a(  and radius r . 

 

* To draw the graph , transform it to  

   the standard form (1.2.b) as follow :    

       020y4x2yx 22   

Complete square roots will used as :  

    02041)4y4y()1x2x( 22   

   222 5)2y()1x(   

which represent a circle with center ,-2) 1(  and radius 5r   . 

§§§§§§§§§§§§ 

 

y /y  

x 

/x  
 

 )2,1(

    

r 

 
   )0,0(                 
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L 

L 

$$$$$$$$  Tray by your self   $$$$$$$$ 

       Discus each of the following equation and draw the graph (if possible)  :   

1) 0193y180x24)yx(36 22    ,    2) 0229y180x24)yx(36 22   

3) 0235y180x24)yx(36 22   ,  4)  014y4x6yx 22      

           5)  2yy6405x   .  

$$$$$$$$ 

 

 

I-1   Relative Position Of  A Circle And Straight Line In Plane :  

This section discuss the relative position of straight line with respect to a circle lies in its 

same Cartesian plane  . 

This positions under discussion summarized in : 

     **  Straight line intersect with the circle in two points  .  

    **  Straight line intersect with the circle in one point( Tangent line)  .  

       **  Straight line doesn't intersect with the circle any where . 
 

 

Let   C  be a circle  satisfy equation (1.0)  with  1CA     for simplicity of calculation 

only , i.e.   :     0FEyDxyx 22   

and  let   L   be a straight line has the equation      0cbyax:L     . 

 

The relative position of the straight line can be discussed by determine the perpendicular 

distance  between  circle center and a point lies on the straight line ( i.e. short distance between 

two points ) . Let    be that distance , then  there is three relative relations between r ( circle 

radius ) and  ( the perpendicular distance ) summarized as: (  r ,   r ,   r  ) and we get 

the three following possibility as in fig (3)  : 

                       22 r                                   22 r                                          22 r    
 

 

 
 

                                     r                                                     r                                                    r  

 

 
 

                  Intersect in two points        Intersect in one point                Doesn't intersect 

fig (1.3) 

C 
C 

L  

L  

L  

C 
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I-2  Equation Of A Tangent And Equation Of  Perpendicular Line:  

The tangent equation to the circle at a circumference point )y,x(M   is : 
 

 

                                                                                                                         (1.4) 

 
 

 

The  equation of perpendicular line  to the circle at a circumference point )y,x(M   is : 

 

 

                                                                                                                         (1.5) 

 
Example :3 

Find the equation of the tangent and the equation of the perpendicular line for the circle :   

021y6x5yx 22    at the point )1,2(M   . 

Solution: 

To find the required equations we must first calculate the center of the circle  as  











2

E
,

2

D
)q,p(  and the tangent point  )y,x(M    

By using the    standard form   (1..3)   we find hat  : the center point   3 , )3/5()q, p(   , 

and the tangent point  )1,2(M)y,x(M  
 .  

 

Then the equation of the tangent ( by using 1.4 ) is  : 

 0)]3(1)[1y()]2/5(2)[2x(   

   0)1y(4)2x(
2

9
       0)1y(8)2x(9   

Then the tangent equation is : 026y8x9      

 

In similar way  

The equation of the perpendicular line ( by using 1.5) is  : 

  0)]3(1).[2x()]2/5(2)[1y(   

   0)2x(4)1y(
2

9
      0)2x(8)1y(9   

Then the perpendicular line equation is : 07x8y9   
§§§§§§§§§§§§ 

 

$$$$$$$$  Tray by your self   $$$$$$$$ 

Find the equation of the tangent and the equation of the perpendicular line for the circle :   

025yx 22    at the point )4,3(M   . 
§§§§§§§§§§§§ 

0)qy)(yy()px)(xx(    

0)qy)(xx()px)(yy(    
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)2,3(A   )4,1(A

)4,1(A

 

 

)3,1(
2

42
,

2

13
)q,p( 







 



  

2
12

2
12 )yy()xx(r2AB   

20)24()31(                22 

 

Example :4 

Find the equation of the circle C has the two points )2,3(A  and  )4,1(B  as end points of one 

of its diagonals  . 

Solution: 

To determine circle equation it must determine the center and the radius values. (See 

fig.1.4) we find that : 

center coordinate is the midpoint of the  

diagonal ends calculate as  

 

    

 

and the redius can be calculated as: 

 
fig. (1.4) 

 

 

     and then  52r2      5r     

Then the equation of the required circle is :  5)3y(1)(x 22   

§§§§§§§§§§§§ 

 

Example :5 

Find the equation of the circle C has center  )7,6( and  has a tangent line  024-12y-5x   . 

Solution: 

Note  

      That the distance between the point )y,x(   and 

the straight line 0cbyax:L   calculated 

by

  

r

ba

cbyax

22









  

, then the radius of the 

circle is : 6
13

78

)12()5(

24)7(12)6(5
r

22





  

and the equation of the circle is : 36)7y(6)-(x 22  . 

§§§§§§§§§§§§ 

 

 

 

2 r 
 

 )3,1(  

  

 

024-12y-5x :L   

 
 

)7,6(  



Chapter 1                                                                  Graphs Of  
                                                                                                         A Second Order   Equations 

 

 7 

)0 , x( 2  )0,  x( 1
 

 

)4,0(  

In y- axis( )0x   then (1.3)  leads to  

           0FEyy2              (1) 

which represent equation of    2
nd

   order has two equal 

roots as it  tang y-axis at )4,0(  and has the form : 

         0)4y( 2  016y8y     2                (2) 

Example :6 
Find the equation of the circle C has   y-axis   as its  tangent   line at the point )4,0(   and 

intersect 6 units from x-axis  (see fig 1.5)   
Solution: 

The circle equation determined as the center and the radius determined , but in that  

case an information lag has occurred so , we use the general form of circle equation (1.3) : 

0FEyDxyx 22     and try to find the coefficient constants   D, E, F as the point )4,0(  

lie on  circle circumference then  it satisfy (1.3) ( note that )0x   we get : 

 

   

 

 
 

 

 
 
           

Compare with equation (1) with (2) we get : 

           8E   and 16F   

Then substitute by this value (1.3) we get :  

              016y8Dxyx 22    (3) 

To find the value of  coefficient  D  , put 0y   in equation (3) to find the point of intersection of 

a circle with x-axis , we get : 

            016Dxx2      (4) 

Which represent also equation of  2
nd

 order has two roots 

 

   
2

64DD
x    ,     

2

64DD
x

2

2

2

1





  

 

But as the intersect length of x-axis )xx( 12  is equal to 6  {i.e. 6)xx( 12  } ,  

then :   10D       100D       3664D      664D)xx( 222
12    ,  

and then , the circle standard form is :  016y8x10yx 22   , which represent  the 

standard form of the two circle :   

25)4y(5)(x 22   . 

§§§§§§§§§§§§ 

6 

fig. (1.5) 
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)0,0(M1
 

)1,1(M2
 

I -3  Intersect  Of  Tow Circles  In  Plane :  

If two intersect circles  in plane with two different centers , then its equations has the 

forms :  

                                                                  (1.6) 

 

 

And to find  its intersection point the corresponding system  (1.7) must be solved :  

 
                  

                                                                                                  (1.7) 

 

 

Example :7 
Discus the intersection of the two given circles formatted as follow : 











020y4x10yx:C

04y4x2yx:C

22
2

22
1  

Solution: 

The given equation of the form (1.6) and transform to the equivalent system (1.7) as : 












0)4y4x2yx()20y4x10yx(

04y4x2yx

2222

22

 

  








02x

04y4x2yx 22

   (1) 

and by solving  system (1) we find that the two circles intersect 

in two consides points )2,2(M  i.e. , two tangent circles at that point . 

§§§§§§§§§§§§ 

Example :8 
Discus the intersection of the two given circles formatted as follow : 











0y2yx:C

0x2yx:C

22
2

22
1  

Solution: 

The given equation of the form (1.6) and transform to the equivalent system (1.7) as : 












0)x2yx()y2yx(

0x2yx

2222

22

 

  








yx

0x2yx 22

   (1) 

and by solving  system (1) we find that the two circles intersect in two different points 

)0,0(M1  and )1,1(M2  . 
§§§§§§§§§§§§ 












0FyExDyx:C

0FyExDyx:C

222
22

2

111
22

1

 











0)FyExDyx()FyExDyx(

0FyExDyx

111
22

222
22

111
22
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I M P O R T A N T   R E S U L T  
 

**  For two  intersected circles , and if its                                            

       tangents at any point of intersection                                      

      are perpendicular , we say that the tow  

      circle are perpendicular and   denoted by :                    1r                  2r        
     21 CC   , and according Physighrath theorem  

       we get that :      2
2

2

1

2 rrL    , where                                  L 

L the distance between its centers . 

1r radius of the first circle . 

2r radius of the second circle . 

§§§§§§§§§§§§ 
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E x e r c i s e   ( 1–1) 

                                                               C i r c l e 
 

 

I- Select ( as soon as you look) the graph types for each of the following  

    equations : 

1) 0y2y2x3x2 22         ,    2) 012y5xy2x 22   . 

3) 12yx2y2                ,    4) 021x12y12x3 22   . 

5) 05y2x3                ,   6) 25y10x2y5x5 22   . 

 

II - Find the standard form for the circle C satisfy the following knowledge : 

     1)  Passing through the origin )0,0( , x-axis is its diagonal with radius 5r  .        

 2) Has a radius 4r  , tangent to  the two axis's and lies in 1
st
 quadrant . 

       3)  Passing through the three points     )2,2(M  ;  )1,1(M  ;  )2,0(M 321   .   

      4)  Tang x-axis at a point  )0,5(  , and intersect 10 units of y-axis .     
         

II- Find the center and the radius of each of the following  circle and draw the  

     graph for each one : 

1) 23y4yx6x 22         ,    2) 013y4x10yx 22   . 

3) 9x)3x( 22                 

III- Discuss the relative position for the graph : 049y14yx12x 22     

     with respect to each of the following straight lines : 

1) 037y12x5        ,   2) 024y12x5    ,  

3) 9x)3x( 22    .  

 

IV- Find the equation for both the tangent  line and the perpendicular line for  

      each of the following circles at the given point :    

1)   012y4yx 22        ;         )3,2(      . 

2)    018y8x3yx 22      ; )4,0(     . 

3)   016y2x8yx 22      ;  )2,4(       . 

4)  01yx2yx 22     ;  )1,1(    .  

§§§§§§§§§§§§ 
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P(x ,y) 
N 

V      F 

 

/D  

D 

x 

y 

d 

II-   Conic Sections  

 The classical Greeks – Archimedes ,   Apollonius and others – notes    that  when a plane  

( not pass the cone vertex )  cut  a cone the then arise graph  is called  the conic  sections  or for 

simply the conic .  

 

N O T E : 

  ** If cutting  plane perpendicular to the  cone then arise graph  is a circle  . 

     ** If cutting  plane is not perpendicular to  the  cone then arise graph  is a conic  . 

        ** Three  types conics arise according to the intersect position between the cone and the  

              which called Parabola , Ellipse and Hyperbola . 

             

In section 1-1 a detail discussion about the circle introduced , the next sections introduce 

detailed information about conics .  

  

The Conic  Sections   

        A general form of conic section fig. (1.6)   is a plane curve arise from a moving  point P  

such that the ratio between its distance about fixed point F  (called the focus of the conic )   to  

the distance  about   fixed  straight   line d ( called the directrix of the conic  ) equal to fixed 

value   e  ( called the eccentricity ) 

 

                                                           

 

                                                           

                                             

 

               
                                              

 
                                     

                                                        
 

 

N O T E : 

  ** Conic focus and conic vertex lies on conic axis . 

    ** The perpendicular focus cord parallel to the conic directrix and both of   them are 

         perpendicular to the conic axis but in different sides of a vertex and of same distance of it  . 

          

i.e. , 

x    is called the Conic Axis . 

F    is called the Conic Focus . 

V    is called the Conic Vertex. 

 

The straight line d  is  called   the      

      Conic Directrix . 

The straight line  /DD   is  called    

     the Perpendicular Focus cord  

    of the conic . 

The ratio )NP/FP(e  is called  

      The eccentricity of the conic . 

 

fig (6.6) 
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P 

F

 

d 

x 

y 

 

)P,0(F  
 

)y,x(P  

 

)0,0(V  -p 
 

py   

 

       The next shapes  form the different intersection position between the plane and the cone , 

and also the different resulting graphs .  

 

 

 

 

 

 

 

 

II-1   The Parabola  :  

              ( 0A   or 0C   in equation (1.0)) 

A parabola is a plane curve consisting of the set of all points P that are equally distance  

from a given fixed point F ( the focus) and a given fixed line d (called the directrix )  ,  i.e. 1e    

, as shown in fig.(1.7.0) 

 

 
 
 
 
 
 

 
 

 

                                         fig.  (1.7.0)                                     fig.  (1.7.a) 

To find a simple equation for this curve , we introduce the coordinate system as shown in 

fig.(1.7.a), in which the focus is the point )P,0(F , where p is a positive number (  represent the 

distance between the focus and the vertex ) and the directrix is the line py  . If )y,x(P any 

arbitrary point on the parabola , then by using distance formula the definition condition (as 

1e    the distance between the focus and the point equal to the distance between the point and 

the directrix )   i.e. ,      
  

directrix  andpoint  between   distancepoint   and  focusbetween    distance

22 )py()py()0x(   

 

and by squaring and simplifying we get : 

22222 ppy2yppy2yx                                               (1.7.a) 

   

d 

py4x2    

1e   1e   1e   
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d 

d 

x 

y 

 

)P,0(F   

 

py   

 

)0,p(F 


 

 

px   
 

px   

)b,a(  
)b,a(  

 

)0,p(F


 

 

px:L   
 

px:L   

 

py:L   

Equation (1.7.a) is therefore the equation of this particular parabola in standard form .  
 

If we change the position of  the parabola relative to the coordinate axes , we naturally 

change  its equation. Three other simple positions , each with corresponding equation are shown 

in fig. (1.9) 

 

 
 
 
 
 
 

 
   

  
 

 

 

 

 

 

 

 

                           fig.  (1.7.b)                       fig (1.7.c)             fig (1.7.d) 

 
Next section give a general standard form of parabola in the xy-plane with a vertex 

)b,a(V instead of )0,0(V  without proofs ,  but to prove  this forms it is easy by applying the 

same previous procedures used in calculated equation (1.7) 

 

N O T E : 

The value 4p represent  the perpendicular cord length General Standard Form For 

Parabolic Equations :  

              (Parabola with vertex )b,a(V instead of )0,0(V ) 

 
                                                                                                                                                 

                                                                           

                                                 

                                                                                                   
                                                                                                 

                                              
                                                                       

                                                                                      

                               

                          fig.  (1.8.a)                           fig (1.8.b)  
 

 

 

 

 

d 

)ax(p4)by( 2     )ax(p4)by( 2   

py4x2 

    
 

    

 

px4y2    px4y2     
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)b,a(  

)b,a(  

 

)0,p(F  

)0,0(V  x 

y 

d 
L 

 

 
                                                                                                                    

 

 

 

 

 

 

 

 

 

 

 
 

                                                          fig.  (1.8.c)                                    fig (1.8.d)  
 

 

Example :9 

Discus and draw the graph of the equation x8y2  , and deduce all of its available 

.information  

Solution: 

 
 
 
 

 

 

 

 

 
  

 
 

 
 

 
  

       * Perpendicular cord  equation  2x:L   and  Perpendicular cord  length   8p4   

§§§§§§§§§§§§ 

 

 

 

)by(p4)ax( 2 

 

)by(p4)ax( 2 

 

   Compare the given equation with this  

     given with fig.(6.7.d ) we get that : 
 

* The conic axes  is x-axis ( the variable    

     of 1
st
 order ) and open right ( refer to the  

     ve sign of the equation ) . 
 

     * Focus )0,2(F)0,p(F   {as 

 8p4 2p  } 

   * Vertex )0,0(V)b,a(V   { as )0,0()b,a(  } 

     * Directrix equation  2x:d   . 
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y 

)2,3(V  )2,4(F  

x 

/x  

/y  

N O T E    JUST    FOR   R E M E M B E R : 
 

** The conic axes ( axis of symmetry ) is the axis has  the variable of 1
st
 order . 

 

** The conic direction ( open )  refer to the equation sign ( ve sign for right or up  but ve sign   

     for left or down ) . 

 

** Focus lies inside the cone and on the axis of symmetry and of a distance p  from the vertex . 
 

 

** Vertex  lies on the axis of symmetry ( conic axis ). 
 

 

** Directrix  d  perpendicular  to the axis of symmetry and of a distance p from  in opposite  

    direction of the focus . 

 

** Perpendicular cord   L  perpendicular  to the axis of symmetry , of a  distance p from the  

     vertex , passing thought the focus F and of length  4p.  

§§§§§§§§§§§§ 

 

Example :10 

Discus and draw the graph of the equation 016x4y4y2  , and deduce all of its 

available .information . 

Solution 

                                                                   

 
                

                         
                                                                                                     

                                                                  

 

 
    
 

Compared  **   with equation (1.8.b)  to get the following information: 

  * The conic axes  is axisx /   ( parallel to x-axis  , corresponding to the variable  of 1
st
 order )  

      and open right (  refer to the ve sign of the equation )  

  * Vertex )2,3(V)b,a(V    

  * Focus )2,4(F)b,pa(F)q,p(F   ( as  4p4 1p  ) 

  * Directrix equation  2x:d    {as : 2x     3-1x     pax  } . 
 

  * Perpendicular cord  equation  4x:L   {as : 4x     31x     pax  }   and   

     Perpendicular cord  length  4p4  . 

§§§§§§§§§§§§ 

  Modify the given equation by using  

  complete square as follows: 

     016x4y4y2   

         0416x4)4y4y( 2   
         12x4)2y( 2   

     )3x(4)2y( 2       ** 
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Example :11 

Discus and draw the graph of the equation 016y4x4x2  , and deduce all of its 

available .information . 

Solution: 

 
 
 
 
 
 
 
 
 

 

 

Compared ** with equation (1.8.c)    to get the following information : 

* The conic axes  is axisy/    ( parallel to y-axis  , corresponding to the variable of 1
st
 order)and  

    open down (refer to the ve sign of the equation )  

* Vertex )3,2(V)b,a(V    

* Focus )4,2(F)13,2(F)bq,a(F)q,p(F   { as  4p4 1p  } 

* Directrix equation  2y:d    {as : 2y     3)1(y     qay  } . 
 

* Perpendicular cord  equation  4y:L   {as : 4y     )3(1-y    qay  }  

    and  Perpendicular cord  length  4p4  . 

§§§§§§§§§§§§ 

 

Example :12 

Deduce the standard equation of the parabola that has a vertex )2,4(V   and has a directrix is 

the equation 5y   and then draw the graph represent this  parabola . 

Solution :  

      In such problem it is more convenient (prefer)  to represent  the given information as a draft 

on the coordinate axes at first , and then compare with   the suitable form of equation (1.8)   

 

**  Directrix equation 5y    , i.e.,  represent a straight line parallel to x-axis  

      and of a distance equal 5 from it . 

 

**  Directrix is perpendicular to conic axis, then  , y-axis is   the conic axis . 

 

**  As the vertex  )2,4(V   and the directrix lies in opposite side of the focus ,  

Modify the given equation by using  

  complete square as follows: 

         016y4x4x2   

        0416y4)4x4x( 2   

         12y4)2x( 2   

           )3y(4)2x( 2     ** 

: 
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)2,4(V   5y 

 

/Y  

/X

 

y 

x 

)0,2(F  

 

2x:d   
 

2x:L   

y 

      Then from figure geometry the parabola  open down . 

 

Then by comparing the given information and the deducing 

 results , its clear that the figure coincide with equation (1.8.c) 

figure coincide with equation (1.8.c) . 

So the standard equation form is :  

)by(p4)ax( 2    , 

i.e.   )2y(12)4x( 2    

with  )2,4()b,a(  { vertex coordinates }. and  3p   { the distance between the vertex and the 

directrix }and the perpendicular cord length is  12p4   . 

§§§§§§§§§§§§ 

 

Example :13 
Deduce the standard equation of the parabola that has a Focus )0,2(F  and its directrix has 

the equation 2x   and then draw the graph represent this  parabola . 

Solution :  

      As in example 12  it is more convenient (prefer)  to represent  the given information as a 

draft on the coordinate axes at first , and then compare with   the suitable form of equation (1.8)   

 

**  Directrix equation 2x    , i.e.,  represent a straight line parallel to y-axis  

      and of a distance equal 2 from it . 

 

**  Directrix is perpendicular to conic axis, then  , x-axis is   the conic axis . 

 

**  As the vertex  )0,2(F  and the directrix lies in opposite side of the focus ,  

      then from figure geometry the parabola  open right  . 

 
Then by comparing the given information  

and the deducing results , its clear that the  

figure coincide with equation (1.7.d) . 

 
So the standard equation form is :  

               px4y2   

i.e.       x8y2   
 

with   vertex coordinates )0,0(O  

and  2p   ( distance between the focus and the vertex ) , so 

and the perpendicular cord length is  8p4   . 
§§§§§§§§§§§§ 
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E x e r c i s e   ( 1–2) 

                                                                        P a r a b o l a  

 

I- Discus and draw the graph of each of the following equation : 

  1)- yx8 2          ,    2)-  2x4xy 2           , 3)-  x1212y2        

  4)- y8x2 2          ,    5)-  )2y(16)3x( 2       , 6)-  )2x(20)2y( 2        

   7)- x48y12 2     ,  8)-  )2y(12)4x( 2     , 9)-  )3x(4)2y( 2        

 
§§§§§§§§§§§§ 

 

II- Deduce the standard equation form for each of the parabola :  

   1)- Has a vertex  )5,3(V   and directrix equation 2x   . 

   2)- Has a Focus )4,0(F   and directrix equation 4y   . 

     3)- Has a vertex  )2,1(V   and a Focus )0,1(F   . 

   4)- Has a vertex  )3,3(V  and directrix equation 2y  . 

     5)- Has a Focus )4,2(F  and directrix equation 1x   . 

    6)- Has a vertex  )0,1(V   and a Focus )0,4(F    . 

   7)- Has a Focus )3,5(F  and directrix equation 1y   . 

    8)- Has a vertex  )2,2(V  and a Focus )2,3(F   . 

 

§§§§§§§§§§§§ 

 

III- Deduce the standard equation form for the parabola with symmetric axis parallel to y-axis , 

      and passing thought the points )1,2( , )2,1(  and )2,1(   , then draw the graph represent this 

        parabola . 

 
§§§§§§§§§§§§ 

 

 
 

 

 

 

 

 

 



Chapter 1                                                                  Graphs Of  
                                                                                                         A Second Order   Equations 

 

 19 

P(x,y) 

A 
/A

 

B 

/B  

II-2   The Ellipse  :  

              ( C0A   in equation (1.0)) 

 An ellipse is the locus of a point  P that moves in such a way that the sum of its distance 

from two fixed points F  and /F  constant  as shown in fig. (1.9.0) (i.e. a2PFFP /  ) 

 

 

 
 

 

 

 

 

 

  

 

 
 

 

fig. (1.9.0)     fig. (1.9.00) 
 

 

 

 

A several standard notions for the dimension of the ellipse will introduced now I  fig. 

(1.9.00).  

**  The two points F  and /F are called the foci ( plural of focus) of the ellipse . 

**  The curve of symmetry a2AA/   is called the major axis of  the ellipse ,  

       passing through the foci and  (a)   is called the semi-major axis . 
 

**   The perpendicular  bisector of the line segment /FF the segment b2BB/       

        is  called the minor axis of  the ellipse (b)   is called the semi-minor axis 
 

**   The two points A and /A at  the  end of  the major axis are called the  

        vertices of  the ellipse . 
 

**   The distance between the foci is equal to  2c   
 

**   If  the major axis coincide with x-axis , the point )0,0(o   is called     the  

       of the ellipse . and then the coordinates of the major points of the ellipse 

      are corresponding to )0,a(A , )0,a(A /  , )b,0(B , )b,0(B/  , )0,c(F and )0,c(F/  .  

From fig. (1.9.a) its clear that : 222 cba    ( Physaghorth theorem )  (i) 

and it is easy to see that :  ab   .  

 

F  /F  
/F  

a 

b 

o F c 

a2PFFP /   
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**   The ration a/c  is called the eccentricity of the ellipse  and is denoted by : 

 

 

        (1.9.0) 

 

 

and notice that :   1e0  .  
 

To simplify the equation of the ellipse , and as we take x-axis  as major axis fig.(1.9.a) 

and from fig.(1.9.0) it is clear that  : a2PFFP /    and as the given coordinates point are 

)y,x(P , )0,c(F and )0,c(F/  then use the distance rule between two points then   :  

a2  y)cx(    y)cx(  

PF

22

/PF

22 
    

  (ii) 

To simplify equation (ii) , follow the usual procedure for eliminating radicals , as : 

2222 y)cx(a2y)cx(    

By squaring both side and simplify   we get : 

x
a

c
ay)cx(PF 22     (iii) 

And from (iii) and the relation FPa2PF/    we get : 

x
a

c
ay)cx(PF 22     (iv)  

By squaring again and simplify either of equation (iii) or (iv) we get : 

2222

2

22

cayx 
a

ca














 
   Or    1

ca

y

a

x
 

22

2

2

2




   ,  

Finally by putting the above equation in its final form we get : 
 

 

 

(1.9) 
 

 
Equation (1.9.a) represent the standard form for the equation of the ellipse shown as in 

fig.(1.9.a) specially as considered that  ba   . 

N O T E 

      Equation (1.9.a) : 1
)  (

y

)  (

x
 

2

2

2

2

  with unequal denominators represents the equation of 

an ellipse and the equation whether the foci and major axis lies on x-axis or the y-axis which is 

determined by which denominator is large as shown in the following figures .  

a

ba

a

c
e

22 
  

 

1
b

y

a

x
 

2

2

2

2

  
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x 

y 

 

/V  

 

V  

x 

y /y  

/x  

x 

y /y  

/x  

x 
 

/V  
 

V  

 

 

 

 

 
                                          /F            F  
 

 

 
 

    

                        fig. (1.9.a)                               fig. (1.9.b) 

 

   
 

The Ellipse  of a Center  )q,p(O / :  

Here we discus ( without proof ) the standard form of the equation of ellipse which has a 

center )q,p(O /  ( transform of coordinates ) and its standard figures as follows :  

 

 

 

 

 

   

 

 

 

 

 
 

                     fig. (1.10.a)                                 fig. (1.10.b) 

 
 

 

 

 

 

 

 
 

 

 
 

       

     (1.10) 

 

 

  F           O    
/F                          

         

      
          F  

 

 

         O 

       
/

F 

ba   

 

/F  

F  

ba   

 

1
b

)qy(

a

)px(
 

2

2

2

2







 

                   ba   

Major axis 
/x parallel to x-axis . 

Minor axis 
/y parallel to y-axis . 

Foci )q,pc(F   and  )q,pc(F /   . 

Vertices )q,pa(V  and )q,pa(V /   

                 ab   

Major axis 
/y parallel to y-axis . 

Minor axis 
/x parallel to x-axis . 

Foci )qc,p(F   and  )qc,p(F/   . 

Vertices )qb,p(V  and )qb,p(V /   
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y 
)0,3(V  )0,3(V /   

B(0,2) 

)2,0(B/   

 

Example :14 

Discus and draw the graph of the equation 36y9x4 22  , and deduce all of its available 

.information . 

Solution: 

 Its clear that the equation represent equation of simple ellipse as : 

**  coefficient of 2x  and coefficient of 2y  are exits and different and of same  

      sign ( i.e. , 0CA  ) . 

**  has a center )0,0(O  as doesn't contain x  or  y . 

Now we put the equation in its standard form as :  

 

36y9x4 22      1
36

y9

36

x4
  

22

  

   1
4

y

9

x
  

22

       (i) 

 

Compare  the last equation  (i) with the standard For ,f and  fig.(1.9.a) we get : 

** 9a2    3a     and  4b2    2b   

** ba         x-axis is the major axis with 6a2    , and 

                         y-axis is the minor axis with 4b2  .  

            ** Vertices are )0,3(V   and  )0,3(V /   .  

            ** Foci  are )0,5(F   and  )0,5(F/   .  

As :    5c559cbac 2222   

§§§§§§§§§§§§ 

Example :15 
Deduce the standard equation of the ellipse that has two Foci  )0,2(  and two vertices 

)0,4(  and has origin )0,0(O  as its  center . 

Solution :  

From the given information  as has a center )0,0(O  then : 

**  The proposed equation form is:  1
b

y

a

x
 

2

2

2

2

     (i) 

**  x-axis is the major axis ( vertices locations )  . 
 

**  the major axis length is 8a2   ( i.e. 4a  ) .                 

                 (the distance between the two vertices are )0,4(V  and )0,4(V /  ) 
 

**  2c   the two  foci are )0,2(F  and )0,2(F/   

**  12b2   ,  as : 2222 b164bac    12b2   

 



)0,5(F  

 

)0,5(F/


  

y 
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)0,4(V  

 

)0,4(V/   

 

)32,0(B  

 

)32,0(B/   

 

**  the minor axis length is 34b2   ( i.e. 4a  ) .                 
Then refer to equation (i) with deduced information we can formulate the ellipse standard 

equation as: 

1
12

y

16

x
 

22

  

 

  

:  

 

 
§§§§§§§§§§§§ 

 
Example :16 

Discus the graph of the equation 071y18x64y9x16 22  , draw the graph and 

deduce all of its available .information . 

Solution: 

 Its clear that the equation represent equation of general  ellipse with vertices )q,p(O /  

as: 

**  coefficient of 2x  and coefficient of 2y  are exits and different and  

    of same  sign ( i.e. , 0CA  ) . 

**  has a center )q,p(O /  as coefficient of  x  and y  both exist   . 

**  The proposed equation form is:    1
b

)qy(

a

)px(
 

2

2

2

2





     (i) 

To get the required equation we modify the given equation as follows : 

  071y18x64y9x16 22      071)y2y(9)x4x(16 22   

By complete square we get : 

   071964)1y2y(9)4x4x(16 22   

     144)1y(9)2x(16 22   

     1
144

)1y(9

144

)2x(16 22







   1
16

)1y(

9

)2x( 22







     **   

 

Compare equation **  with the standard form (1.10) and fig.(1.10.b) It clear  that :  

 

** ellipse center is )1,2()q,p(   

** /y -axis is the major axis of the ellipse  ( as: 4b16b2   and .( 3a9a2  ) 
    

 



)0,2(F  

 

)0,2(F/


  
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x 

y 

/x  

/y  

)5,2(V   

)3,2(V /   

 **  the major axis length is 8b2  . 

 **  the minor axis length is 6a2  . 

 

** the two foci are : 

    )71,2(F)cq,p(F      and  )71,2(F)cq,p(F //    

        ( as :  7c       7916c    bac 2222   ) 
 

** the two vertices are     )41,2(V)bq,p(V    

and  )41,2(V)bq,p(V //    

i.e.   )5,2(V   , )3,2(V /   

 

 

 

 

 
§§§§§§§§§§§§ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     F     

        8 

 
    6 

 

     F 
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E x e r c i s e   ( 1–3) 

                                                                       E l l i p s e s  

I- Discus the graphs of each of the following equations , draw the graph and deduce all of its 

   available .information . 

     1 )-  1
16

y

25

x 22

           ,   2 )- 1
25

y

49

)4x( 22


      ,    3 )- 1

36

)4y(

9

)3x( 22





  

     4)- 1
49

)2y(

16

x 22




       ,    5)- 225y25x9 22     ,  6)- 0y20x2y2x 22         

       7)- 061y16x54y4x9 22      ,    8)- 064y36x32y9x4 22         

       9)- 047y32x54y16x9 22        ,   10)- 09y18x24y9x4 22         

 

II- Deduce the  standard  equation of  the ellipse that  has  the    following information and  

       Deduce all available other  unmentioned ellipse information 

    1)- Two foci  )2,0(   and two vertices )7,0(   center  )0,0( . 

    2)- Two foci  )0,5(  and two vertices )0,8(  . 

   3)- Two foci  )0,3(  and minor length axis equal 2 . 

    4)- One of  its  focus  )2,0(  and major length axis equal 10 . 

   5)- Center )2,2( one of  its  focus  )2,1(  and major length axis equal 102  . 

    6)- Two Foci  )5,2(  , )5,4(  and minor length axis equal 8 . 

  7)- Center  )3,3(   , major axis parallel to x-axis and major length axis equal 20  and  

                 minorlength axis equal 16  .  

    8)- Two vertices   )6,0(   and pass thought the point  )2,3( . 

    9)- Pass through the two points )2,3(  and )1,6( . 

    10)- Minor axis ends are  )1,2(  , )7,2(   and the distance between its foci 1. 

§§§§§§§§§§§§ 
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

)0,c(F  

 



 )0,c(F /  

)y,x(P  

x 

y 

II-3   The Hyperbola  :  

              ( C0A   in equation and in different sign in (1.0)) 

 

A  hyperbola  is the locus of a point  P that moves in such a way that the difference of its 

distance from two fixed points F and 
/F (called the foci )is constant . 

If this constant is denoted by a2 , with 0a   , then a little though will show the locus 

consists of two branches as shown in Fig.(1.11.a) , where : 

   **  The right branch is the locus of the equation  : a2PFPF/    ;  and 
       

      **  The left branch is the locus of the equation  : a2PFPF /    .   (1) 
 

         ** The defining condition for the complete hyperbola can be therefore be  

   written as   : a2PFPF/    .  
 

 

 

 

 

 

 
 

                                                                                                       fig.(1.11.a) 

By moving the second radial to the right side , squaring , and simplifying , we obtain the 

local radius formulas  

  







 ax

a

c
y)cx(PF 22    (2) 

and  

  







 ax

a

c
y)cx(PF 22/   (3) 

where (3) follow from (2) because PFa2PF/   . As in (1) , the plus signs here 

correspond to the right branch of the curve , and the minus sign to the left branch .By squaring 

and simplifying , either of this equations gives  

2222

2

22

acyx
a

ac














 
       ; then put 222 b)ac(   

 

 

we get :           (1.11.a) 

         
 

     
 

which represent the standard form of the equation of the hyperbola shown  in Fig. ( 1.11) 

1
b

y

a

x

2

2

2

2

  

To find a simple equation for the hyperbola 

, take the x-axis along the segment 
/FF  and the y-

axis as the perpendicular bisector of this segment . 

If  c2  denotes the distance between  F  and 
/F  , 

then )0,c(F    and )0,c(F/   as shown in 

Fig.(1.11) and (1) becomes   a2PFPF /   

  a2y)cx(y)cx( 2222   
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)c,0(F

 

)y,x(P  

x 

 

)c,0(F/   

y 

 



)0,c(F  
x 

y 

 



 )0,c(F /  

 

x
a

b
y   

 

x
a

b
y   

Now  another form of equation (1.11.1) can be evaluated if we replace the coefficient 

signs of  both 2x  and 2y   which  can be represents in its standard form as : 

 

     

                         

    (1.11.b) 
 

 

and its graph seen like we rotate Fig. (1.11.a) by 90  to be as in Fig. (1.11.b) bellow : 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

                                                                       c        b 

                                        /V               V  

 
 

 

 

 
                                                  fig.(1.11.b) 

 

where :  

   **  its clear in that case the eccentricity 1e   , and  as in ellipse case )a/c(e  . 

      **  x)a/b(y    are a straight lines called the right and left asymptotes. 

         **    x-axis is the major axis and y-axis is conjugate axis .  

           **   )0,a(V   and   )0,a(V /    are the two vertices . 

 

 

1
a

x

b

y

2

2

2

2

  

Now we turn to a careful consideration of the 

hyperbola shown in Fig.(6.11.a) on the nature of the 

hyperbola it represents . Our discussion will reveal 

additional features of the hyperbola that are not obvious 

from the definition and that are indicated in greater 

detail in Fig. (6.11.c) 

 

a 
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F /F  

 

x)2/3(y    

x)2/3(y   

V 
 

/V  

N O T E  

    Just as in the case of ellipse , can easily write the equation of hyperbola with center )q,p( and 

principal axis parallel to one of the coordinate axis . 

The equations are : 

 

                                   

 

                                                       Or   

 

 

                                        (1.12.a)                 (1.12.b) 

  
 

Example :17 

Discus the graph of the equation 36y4x9 22  , draw the graph and deduce all of its 

available .information . 

Solution: 

Its clear that the equation represent equation of hyperbola  with x-axis as a major axis 

( ve sign )  and y-axis is the conjugate axis ( ve sign ) . 

Equation must put in the hyperbola standard form as: 

    1
36

y4

36

x9
 

22

   1
9

y

4

x
 

22

  

 compare the given equation with  

the standard form (1.11.a) we get : 

 
 
 
 
 

 

 
§§§§§§§§§§§§ 

 

Example :18 

Discus the graph of the equation 36x4y9 22  , draw the graph and deduce all of its 

available .information . 

Solution: 

Its clear that the equation represent equation of hyperbola  with y-axis as a major axis 

( ve sign )  and x-axis is the conjugate axis ( ve sign ) . 

Equation must put in the hyperbola standard form as:   

1
b

)qy(

a

)px(

2

2

2

2







 1
a

)px(

b

)qy(

2

2

2

2







 

**  2a    , 3b   

  **  Vertices : )0,2(V  , )0,2(V /   

     ** Asymptotes  : x)2/3(y   ,  

       ** Foci : )0,13(F , )0,13(F/   

as : 1394bac 222   
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F 

/F  

 

x)2/3(y   

 

x)2/3(y   

V 

 

/V  

x
2

3
y   x

2

3
y   

/x  

x 

y /y  

 

    1
36

x4

36

y9
 

22

   1
9

x

4

y
 

22

  

 compare the given equation with  

the standard form (1.11.a) we get : 

 
 

 
 
 

 

 
 

§§§§§§§§§§§§ 

Example :19 

Discus the graph of the equation 029y16x54y4x9 22  , draw the graph and deduce 

all of its available .information . 

Solution: 

Its clear that the equation represent equation of hyperbola  with /x (parallel to x-axis)  as 

a major axis ( ve sign ) and /y  (parallel to y-axis) is the conjugate axis ( ve sign ) and has 

center )q,p( as contain ( x  , y of 1
st
 order ). 

Equation must put in the hyperbola standard form(1.12.a)  as: 

    029y16x54y4x9 22   

   029)y16y4()x54x9( 22   

and by complete square  

    029)y4y(4)x6x(9 22   

    029)4y4y(4)9x6x(9 22   

    029y16x54y4x9 22   

    0291681)2y(4)3x(9 22   

    36)2y(4)3x(9 22   

  1
9

)2y(

4

)3x(
 

22







 ** 

Compare the given equation with the standard form (1.12.a) we get : 

as  2a4a2   and 3b9b2   

**  Hyperbola of  a center )2,3(   . 

**  Vertices : )2,23(V   , )2,23(V /   i.e. )2,5(V   , )2,1(V /   

** Foci )2,133(F  , )2,133(F/  (as: 13c1359cbac 2222   ) 

**  Asymptotes  : x)2/3(y  . 
§§§§§§§§§§§§ 

 

**  3a    , 2b   

  **  Vertices : )2,0(V  , )2,0(V /   

     ** Asymptotes  : x)2/3(y   ,  

       ** Foci : )13,0(F , )13,0(F/   

as : 1394bac 222   
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Example :20 

Deduce the standard equation of the hyperbola that has a center )0,0(O , vertices )0,3(V   

and pass through the point )2,5(P and find all available information .  

Solution :  

 The vertex coordinates indicate that x-axis is the major axis , y-axis is the conjugate axis 

and parabola has center )0,0(O  , then has the standard form (1.11.a)  1
b

y

a

x
 

2

2

2

2

  

** To find  a  and  b 

** 3a    )0,3(    )0,a(V   
 

And as the conic pass through the point 

)2,5(P  then it verify its equation and so  

1
b

2

9

5
 

2

22

  


 2

3
b

4

9
b2   , and then : 

**  The standard form of the conic is : 1
)4/9(

y

9

x
 

22

  

   ** Foci )0,5
2

3
(F , )0,5

2

3
(F/   

          (as: 5
2

3
c)4/45()4/9(9cbac 2222   ) 

**  Asymptotes  : x
2

1
y       x

2

b
y  . 

§§§§§§§§§§§§ 
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E x e r c i s e   ( 1–4) 

          H y p e r b o l a 

 

I- Discus the graph of the following equations ,draw that graphs and deduce all  

    of its available .information . 

  1)  100y25x4 22               , 2)  08y36x32y9x4 22   

 3)  225y25x9 22                 , 4)  049y8x32yx4 22   

 5)  064x16y4 22              , 6)  0109y32x250y16x25 22   

7)  010y54x100y9x25 22            ,   8) 1
16

)2x(

49

)3y(
   

22







 . 

 9)  036y36x12xy9 22  .     ,  10)  1
36

)4y(

9

)3x( 22







 

11) 010y54x100y9x25 22            , 12)  1
25

y

49

)4x( 22


  

 

 

II- Deduce the standard equation of each of the following hyperbola that has the given   

     information     : 

    1) Center )0,0(O , vertices )1,0(V   and foci  )4,0(F  . 

    2) Center )0,0(O , vertices )0,5(V   and foci  )0,8(F  . 

    3) Center )0,0(O , vertices )0,3(V   and pass through the point )2,8(P . 

    4) Center )0,0(O , vertices )0,3(  and asymptotes  x2y   . 

    5) Center )0,0(O , foci )10,0(   and asymptotes  x
3

1
y   . 

     6) Center )0,0(O , vertices )0,2(  and foci  )0,6( . 

     7) Center )0,0(O , foci  )0,5(  and the distance between vertices 8a2  . 

     8) Center )4,2(O  , one of its focus )4,7(   and the distance between vertices 8a2  . 

        

§§§§§§§§§§§§ 
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CHAPTER 2 

 

 

 

 
 

I- P A R A M E T R I C   E Q U A T I O N S 

I-1  P a r a m e t r i c   E q u a t i o n s 

When the path of a point moving in the plane looks like the 

curve in Fig. (2.1), we cannot hope to describe it with a Cartesian 

formula that expresses y directly in terms of x or x directly in 

terms of y. Instead, we express each points coordinates as a 

function of  time   t  

and describe the path with a pair of equations  

                           )t(gy,)t(fx  .                                                            Fig. (2.1) 

Definition : 1 
                          

 

                                                                                                                                                   

 

 

The graphs of several curves are sketched in Fig. (2.2), where I is a closed interval 

]b,a[ . In (i)  )b(P)a(P  , and P(a) and P(b) are called the end points of C. The curve in (i) 

intersects itself; that is, two different values of t produce the same point. If )b(P)a(P  , as in 

(ii), then C is closed curve. If )b(P)a(P   and C does not intersect it self at any other point, 

as in (iii), then C is a simple closed curve. 

 

 

 

 

 

 

 

Fig. (2.2) 

 PARAMETRIC  EQUATIONS   

AND  POLAR  COORDINATES 

A plane curve is a set C of ordered pairs  )t(g),t(f  where f  and  g  are 

continuous functions on an interval  I. 
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Definition : 2 
                          

 

                                                                                                                                                   

 

 

 

 

 

Example :1 

Sketch the graph of the curve C that has the parameterization : 

2t1;1ty,t2x 2   

Solution: 
               

                                                                                                                   

 

 

 

The arrowheads on the graph indicate the direction in which )y,x(P  traces the curve 

C as t   increases from -1 to 2.  [see Fig. (2.3)].  

 

By eliminating the parameter t, we obtain the equation in Cartesian form as,    

        .4x2;1
2

x
y

2









           

 

The graph of the curve C is that part of the parabola  

(symmetric about the y-axis with vertex at (0, 1))  between 

the points (-2, 0) and (4, 3). The orientation of the 

parameterized curve C is the direction determined by 

increasing values of the parameter. This orientation is     

indicated by arrowheads on C.        

                                                               
§§§§§§§§§§§§ 

                                                           

 

t -1 -1/2 0 1/2 1 3/2 2 

x -2 -1 0 1 2 3 4 

y 0 -3/4 -1 -3/4 0 5/4 3 

Let C be the curve consisting of all ordered pairs  )t(g),t(f  where f  and  

g  are continuous functions on an interval I . The equations )t(gy,)t(fx   

for It   are parametric equations for the curve  C  with parameter  t. 

 

Fig. (2.3) 
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Example :2 

A point moves in a plane such that its position )y,x(P  at time t  is given by: 

 t;tsinay,tcosax , 

where  0a  . Describe the motion of the point. 

Solution : 

 

t 

 

0 4


 

2


 

4

3
 

 

  4

5
 

2

3
 

4

7
 

 

2  

 

x 

 

a  2

a
 

 

0 2

a
 

 

a  2

a
 

 

0 2

a
 

 

a  

 

y 

 

0 2

a
 

 

a  2

a
 

 

0 2

a
 

 

a  2

a
 

 

0 

 

[See Fig. (2.4)].   We may eliminate the parameter by 

rewriting the parametric equation as, 

tsin
a

y
,tcos

a

x
 , 

and using the identity  ,1sincos 22  tt   to obtain,  
222 ayx  ,   which is a circle C of  radius a  with 

center at the origin as shown.                                                                      
                                                                                                                      Fig. (2.4) 

§§§§§§§§§§§§ 
Example :3 

Sketch the graph of the curve C that has the parameterization: 

 t;t21y,t2x 22  

and indicate the orientation. 

Solution : 

t -3 -2 -1 0 1 2 3 

x 7 2 -1 -2 -1 2 3 

y 19 9 3 1 3 9 19 

 

 

 

 

 

 

Fig. (2.5)  
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By eliminating the parameter t, we obtain the equation in Cartesian form as:  5x2y   

It is  an  equation  of  the line of  slope  2  through  the  point (-2, 1) as shown. 

Since  0t 2  ,  thus the graph of C is that part of the line to the right of the point (-2, 1) 

(which corresponding to the value  .0t  ) 

 

The orientation is indicated by the arrows alongside of C.   As t increases in the 

interval ]0,( ,  the point )y,x(P  moves down the curve toward the point (-2, 1).  

As  t increases in ),0[  , the point )y,x(P  moves up the curve away from the point (-2, 1). 

 

§§§§§§§§§§§§ 
 

Example :4 

Find three parameterizations for the line  of slope  m  through the point )y,x( 11  

Solution : 

By the point-slope form, an equation for the line is:   )xx(myy 11  . 

let :  tx  ,  then )xt(myy 11  ,   and we obtain the parameterization,         

 t;)xt(myy,tx 11 . 

 

We obtain another parameterization for the line if we let,   txx 1  . 

 

In this case, tmyy 1  , and we obtain the parameterization, 

                  t;tmyy,txx 11 . 

For third parameterization, let  txx tan1  , then  ttanmyy 1  , and we obtain the 

parameterization,  

                
2

t
2

;ttanmyy,ttanxx 11





 . 

We can find many other parameterizations for the line . 

§§§§§§§§§§§§ 

 

 

 

 

 

 



Chapter 2                                                     Parametric   Equations 

                                                                                                              And Polar Coordinates 

 

 

 37 

Example :5 

A computer-generated graph of the figure :     

tcosy,t2sinx  ;     2t0  

is shown in Fig. (2.6), with the arrowheads indicating the orientation.  Verify the orientation , 

and find an equation in x and y for the curve.                                                                                                              

Solution: 

 

t 

 

0 
4


 

2


 

4

3
 

 

  
4

5
 

2

3
 

4

7
 

 

2  

 

x 

 

0 

 

1 

 

0 

 

-1 

 

0 

 

1 

 

0 

 

-1 

 

0 

 

y 

 

1 2

1   

0 2

1   

-1 2

1   

0 2

1   

1 

 

As t increases from 0 to 2/ , the point )y,x(P  starts  

at (0,1) and traces the part of the curve in quadrant I in 

clockwise direction.  As t increases from 2/  to  , the point 

)y,x(P traces the part in quadrant III in a counterclockwise 

direction.  

       For 2/3t  , we obtain the part in quadrant IV, 

and   2t2/3  gives us the part in quadrant II.                                     

Fig. (2.6) 

Now,          tcostsin2t2sinx   .  

 Then,                                               

   2222222 y)y1(4tcos)tcos1(4tcostsin4x      

or   

0xy4y4 224   

Solving for y :   
2

x11

8

x16164
y

22
2 




  

                           
2

x11
y

2
 . 

These complicated equations should indicate the advantage of expressing the curve in 

parametric form.  

§§§§§§§§§§§§ 
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Example :6 

The curve traced by a fixed point P on the circumference of a circle as the circle rolls along a 

line in a plane is called a Cycloid. Find parametric equations for a cycloid and determine the 

intervals on which it is smooth. 

Solution  : 

 

 

 

 

                                    

 

 

Fig. (2.7) 

 

  Let K denotes the center of the circle and T the point of tangency with the x-axis.  Let 

t  be the radian angle TKP. Thus the distance from O to T  is   ta)T,O(d   

 K is  )a,ta( . Translate the axes to K )a,ta( , then 

             t
2

3
,'yay,'xatx 


 .  

Since      


 2
2

t ,    from the graph, we get: 

             tsinat
2

3
cosacosa'x 











  

             tcosat
2

3
sinasina'y 











 , 

then,       t);tcos1(ay,)tsint(ax  

                      tsina
dt

dy
,)tcos1(a

dt

dx
  

 

these derivatives are continuous for every t, but are simultaneously 0 at nt 2  for every 

integer n. Then the cycloid is smooth in the interval ])1(2,2[  nn  for every integer n. 

§§§§§§§§§§§§ 
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Example :7 

Sketch the graph of the curve C that has the parameterization: 

 2t0,tsiny,tcosx 33  

This curve is called the Asteroid 

Solution: 

 

 

t 

 

0 
4


 

2


 

4

3
 

 

  
4

5
 

2

3
 

4

7
 

 

2  

X 
 

1 22

1   

0 22

1   

-1 
22/1  

 

0 22

1   

1 

Y 
 

0 22

1   

1 22

1   

0 22

1   

-1 22

1   

0 

 

 

 

 

 

 

 

 

 

                                                

 

 

Fig. (2.8) 
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E x e r c i s e   ( 2 – 1) 

 

 (I)  Find an equation in x and y whose graph contains the points on the curve C. Sketch the  

      graph of C.   

.5t0;3t2y,2tx)1(   

.4t1;1ty,t21x)2(   

.t;ey,ex)3( t2t    

.t;ey,ex)4( tt  

 .2/2/;tan,sec)5(   ttytx  

.t;tsiny,t2cosx)6(   

.;sinh2,cosh3)7(  ttytx

 .t;tsinhy,tcoshx)8(   

.2t0;)2t(y,)1t(x)9( 23   

.t0;tsiny,tcosx)10(   

 

 

(II)    Show that :    2t0;htsinby,htcosax    are parametric equations of an  

          ellipse with center (h, k), and axes of lengths a2 and 2b. 

 

§§§§§§§§§§§§ 
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I-2  D e r i v a t i v e s  ,  A r c  L e n g t h   A n d    S u r f a c e    A r e a  

From the previous course "Math A", If a curve is described by an equation )(xfy  , 

where f is a differentiable function, we know how to find the slope of a tangent line at a point 

on the curve, the length of the curve, and the area of the surface of revolution obtained by 

revolving the curve about an axis. In this section, we discuss how to find these quantities 

when the curve is described by parametric equations. 

Theorem  : 1 
 

 

 

 

 
 

Example :8 

Find the equation of tangent to the curve,,    
2

t
2

;ttany,tsecx





 , 

at the point  1,2  ,  where  4/t   

Solution : 

The slope of the curve at t  is  ,   
ttan

tsec

ttantsec

tsec

dt/dx

dt/dy

dx

dy
2

 , 

at    4/t  ,     2
1

2

)4/(ttan

)4/(sec

dx

dy

4/t









. 

The equation of tangent is:    )2x(21y      or      1x2y   
§§§§§§§§§§§§ 

Example :9 

Let C be the curve with parameterization: 

2t1;1ty,t2x 2  . 

Find the equations of the tangent and normal lines to C at 1t  . 

Solution  : 

t
2

t2

dt/dx

dt/dy

dx

dy
  

The slope of the tangent line to C at 1t  , 1m1  , and the slope of the normal line to C at 

1t  , 1m2  . The point corresponding to 1t   is  )0,2(P  

equation of tangent line :  2xy     and   equation of normal line :  2xy   . 

§§§§§§§§§§§§ 

If a smooth curve C is given parametrically by )t(fx  , )t(gy  , then the 

slope of the tangent line to C at )y,x(P  is : 
dt/dx

dt/dy

dx

dy
   provided  0

dt

dx
 . 
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Example :10 

Let C be the curve with parameterization,  

 t;1t5ty,t3tx 23  . 

a) Find an equation of the tangent line to C at the point corresponding to 2t  .  

b) For what values of  t  is the tangent line horizontal or vertical  ? 

Solution : 

a) Using the parametric equations for C, we find that the point corresponding to 2t   

is:   )7,2(P  .    
3t3

5t2

dt/dx

dt/dy

dx

dy
2 


  

the slope m of the tangent line at (2,-7)   is :  
9

1

3t3

5t2
m

2t

2
















 

The equation of the tangent line is :   

)2x(
9

1
7y       or     061y9x  . 

             b) The tangent is horizontal  if :  0
3t3

5t2

dx

dy
2





 ,   05t2.e.i  ,   or   

2

5
t  . 

The corresponding point on C is  








4

29
,

8

65
. 

The tangent is vertical  if:  





3t3

5t2

dx

dy
2

,     03t3.e.i 3  ,    or      1t  . 

The corresponding points on C are   )5,2(),5,2(  . 

§§§§§§§§§§§§ 

Theorem  : 2 
 

 

 

 

 
 

 

N O T E  

 

 

 

If a smooth curve C is given parametrically by )t(fx  , )t(gy  ,  and if 'y  

is differentiable function of  t  then the second derivative in parametric form, 

dt/dx

dt/'dy

dx

'dy

dx

yd
2

2

    provided  0
dt

dx
 . 

 

22

22

2

2

dt/dx

dt/yd

dx

yd
  
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Example :11 

Find  22 dx/yd as a function of   t  if   t;tty,ttx 32  

Solution : 

As :  
t21

t31

dt/dx

dt/dy

dx

dy
'y

2




  

2

22

)t21(

t6t62

t21

t31

dt

d

dt

'dy























  


dt/dx

dt/'dy

dx

yd
2

2

t21

1

)t21(

t6t62

2

2




  =  

3

2

)t21(

t6t62



  

§§§§§§§§§§§§ 

Example :12 

Let C be the curve with parameterization,       t;ey,ex t2t
 

    a) Sketch the graph of C and indicate the orientation. 

    b) Find 
2

2

dx

yd
. 

    c) Find a function K that has the same graph as C, and use )(' xK and )('' xK  to check the  

        answers to (b) 

    d) Discuss the concavity of C.                                                                                  

Solution: 

a) To get the graph of C, eliminate the parameter, 

 tt eex /1  ,  i.e.  
x

et 1
 ,  then  

2

2
11

xx
y 








 .             

Note that, 0,0 2   tt eyex .  

The point (1,1) corresponds to 0t . If t increases in ]0,( , the point ),( yxP  approaches 

(1, 1) from the right. If  t increases in ),0[  , the point ),( yxP  moves up the curve 

approaching the y-axis. 

b)      t3

t

t2

e2
e

e2

dt/dx

dt/dy
'y 





          t4

t

t3

e6
e

e6

dt/dx

dt/'dy
''y 







 

c)   From (a), a function K that has the same graph as C is given by 

       0x;x
x

1
)x(K 2

2
  .              

t33t3 e2)e(2x2)x('K  
.       

  
t44t4 e6)e(6x6)x(''K  
.    This values agree with the results in (b). 

d)  Since  t0e6)x(''K
dx

yd t4

2

2

, the curve C is concave upward at every point. 

§§§§§§§§§§§§ 

Fig. (2.9) 
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Example :13 

Find the area enclosed by the Asteroid:    2t0,tsiny,tcosx 33   [see fig 2.8] 

Solution : 

By symmetry, the enclosed area is 4 times the area beneath the curve in the first 

quadrant where  2/0  t  .  We can apply the definite integral formula for area studied 

in Math (1), using substitution to express the curve and differential dx in terms of the 

parameter t. So, 

   


0

2/

23
1

0

dt]tsin[tcos3*tsin4dxy4Area  

               

2/

0

24 cossin12



dttt   






 







 


2/

0

2

2

2cos1

2

2cos1
12



dt
tt

 

                 


8

3
dtt2cost2cost2cos1

2

3 2/

0

32                                  

 

 If a curve C is the graph of  )x(fy   and the function f is smooth on ]b,a[ , then the 

length of C is given by :    
b

a

2 dx)]x('f[1L   ; The next theorem give a formula for 

finding length of parameterized curve. 

 
§§§§§§§§§§§§ 

 

 

Theorem  : 3 
 

 

 

 

 
 

 

 

The integral formula in theorem (3) is not necessarily true if C intersects itself. 

 

 

 

If a smooth curve C is given parametrically by )t(fx  , )t(gy  , bta  , 

and if C does not intersect itself, except possibly for at   and bt  , then  the length  

L  of  C is  :    
















 

b

a

22b

a

22 dt
dt

dy

dt

dx
dt)]t('g[)]t('f[L  
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Example :14 

Find the length of one arch of the cycloid that has the parameterization, 

 t;tcos1y,tsintx  

Solution: 

The graph has the shape as shown in Fig (2.10) 

, the radius a of the circle is 2.  

One arch is obtained if t varies from 0 to 2 .                                                                                                  

    
2

0

22 dt)t(sin)tcos1(L  

    

2

0

22 sincoscos21 dtttt  

             
2

0

dttcos22  
2

0

dttcos12  

    but    2/)tcos1()2/t(sin2    ,   then 

    
2

0

2 dt)2/t(sin22L 
2

0

dt)2/t(sin2   8)2/t(cos4
2
0 


. 

§§§§§§§§§§§§ 
 

Example :15 

Find the length  in the first quadrant of the Asteroid :  tsiny,tcosx 33   

Solution: 

tsintcos9)tsintcos3(
dt

dx 2422
2









,  

tcostsin9)tcostsin3(
dt

dy 2422
2









 

         


















b

a

22

dt
dt

dy

dt

dx
L  

  
 2/

0

2222 dt)tcost(sintcostsin9  

         
 4/

0

dttcostsin3
2/

0

2 tsin
2

3






 5.1

2

3
)01(

2

3
  

§§§§§§§§§§§§ 
 

Fig. (2.10) 
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Theorem  : 4 
 

 

 

 

 
 

 

 

 

 

 

Example :16 

Find the area of the surface generated by revolving the curve: 

  2t0;tsin1y,tcosx       ;   about the   x-axis 

Solution: 

 


















b

a

22

dt
dt

dy

dt

dx
y2S  

2

0

22 dttcostsin)tsin1(2  

                 22
0

2

0

4tcost2dt)tsin1(2  




  

§§§§§§§§§§§§ 
 

Example :17 

Verify that the surface area of a sphere of radius a  is 24 a . 

Solution : 

If C is the upper half of the circle: 222 ayx   ,  

then the spherical surface may be obtained by  

revolving C about the x-axis Fig. (2.11).  

Parametric equations for C are:  

 t0;tsinay,tcosax                                        

     


0

22
b

a

dttcosatsinatsina2dLy2S  




0

2 dttsina2   0
2 tcosa2  22 a4)11(a2  .                                                                                                                                                                                                                               

§§§§§§§§§§§§ 

If a smooth curve C is given parametrically by )t(fx  , )t(gy  , bta  , 

and if C does not intersect itself, except possibly for at   and bt  , then  the area S 

of the surface of revolution obtained by revolving C is       

 
















 

b

a

22b

a

dt
dt

dy

dt

dx
)t(g2dLy2S  ;  about the  x-axis   

 
















 

b

a

22b

a

dt
dt

dy

dt

dx
)t(f2dLx2S  ;  about the  y-axis   

Fig. (2.11) 
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E x e r c i s e   ( 2 – 2) 

 (I) Find the slopes of the tangent line and the normal line at the point on the curve that  

      corresponds to t = 2. 

.2t2;1ty,5t4x)1( 22   

.2t2;1ty,1tx)2( 33   

.t;3t2y,5t4x)3( 2   

.t;ty,tx)4( 23   

.0t;3t4y,tx)5(   

.2t0;tcos3y,tsin2x)6( 

 .2t0;3tsiny,2tcosx)7(   
 

(II) Find the points on the curve C at which the tangent line is either horizontal or vertical.  

       Find 
2

2

dx

yd .  

  t;t12ty,t4x)1( 32  

 t;4ty,t4tx)2( 23
 

0t;ty,t6t3x)3( 2  . 

 t0;tsiny,t2cosx)4( 2  

   .;sinh,cosh)5(  ttytx  

    2t0;tsiny,tcosx)6( 33
 

 

(III)  Find the length of the curve, 

10;2,5)1( 32  ttytx . 

41;2,3)2( 2/3  ttytx  

.2/0;sin,cos)3(  tteytex tt  

 ttytx 0;sin,2cos)4( 2  

2/0;sin,cos)5( 33  ttytx  
  

(IV)  Find the area of the surface generated by revolving of the curve C about the  x-axis, 

41;2,)1( 2  ttytx . 

10;
3

1
,)2( 32  tttytx . 

.21;,4)3( 3  ttytx  

20;cos1,sin)4(  ttyttx  
 

 (V)  Find the area of the surface generated by revolving of the curve C about the  y-axis, 

41;
1

2

1
,4)1( 2  t

t
tytx . 

50;1,3)2(  ttytx . 

.2/0;sin,cos)3(  tteytex tt  

10;2,3)4( 32  ttytx  
§§§§§§§§§§§§ 
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II-  PO L A R    C O O R D I N A T E S 

II-1   P o l a r    A n d   C a r t e s i a n   C o o r d i n a t e s 

In a rectangular coordinate system, the order pair ),( ba  

denotes the point whose directed distances from the x-axis 

and y-axis are b and a  respectively.  Another method for 

representing points is to use polar coordinates.                                      

We begin with a fixed point 0 (the origin, or pole)  and a 

directed line (the polar axis) with end point 0.                                                         

                                                                                                                        

Next we consider any point P in the plane different from 0.   If  , as illustrated in   Fig 

(2. 12)  )p,0(dr   and    denotes the measure of any angle determined by the polar  axis 

and OP, then r and    are polar coordinates of P, the polar coordinates of a point are not 

unique. For example, the points ),r(P  , ....,3,2,1n);n2,r(P   

We agree that the pole 0 has polar coordinates ),0(   for any  .  

 

Any point ),r(P   in the polar coordinate is denoted by )y,x(P  in the rectangular 

coordinate system as illustrated in Fig. (2.12), so the question  

  

“ What is the relation between the polar coordinate 

and the rectangular coordinate systems ?  ” 

 

The question is arise now and the answer in the following theorem. 

 

 

Theorem  : 5 
 

 

 

 

 
 

 

 

 

Fig. (2.12) 

The rectangular coordinates of the point )y,x(P and the polar coordinates 

),r(P   are related as follows: 

 sinry,cosrx)i(    ;     







 

x

y
tan,yxr)ii( 122  
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Example :18 

Find the polar equation for the circle :  ,9yx 22   

Solution: 

Substituting  sinry,cosrx   to the given equation we obtain the 

corresponding polar equation  3r      which is a circle centered at origin with radius 3. 

§§§§§§§§§§§§ 
Example :19 

Find a polar equation for the circle :  ,9)3y(x 22   

Solution : 

Substituting  sinry,cosrx    to  the given equation  

  ,9)3sinr(cosr 222   

  99sinr6sinrcosr 2222   

  ,0sinr6r2   sin6ror0r  

     which is a circle centered at )3,0(  with radius 3. 

§§§§§§§§§§§§ 
 

Example :20 

Replace the following polar equations by equivalent Cartesian equations and identify 

their graphs. 

,5cosr)i(   cosr4r)ii( 2




sincos2

4
r)iii(  

Solution: 

Use the substitution  sinry,cosrx  

5x.e.i5cosr)i(   

        The graph is vertical line through 5x  . 

        

 cosr4r)ii( 2  

        4y)2x(e.ix4yx 2222   

        The graph is circle , radius 2 and centered at  )0,2(  

 




sincos2

4
r)iii(  

      4x2yor4yx2.e.i4sinrcosr2   

        The graph is  line with slope 2m   and y-intercept  4b   
 

§§§§§§§§§§§§ 

Fig (2.13) 
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Example :21 

Sketch the graph of the polar equation   sin4r ,  0 . 

Solution:  

 

 

 

 

 

 

 

 

 

 

If   vary from   to  2 , the obtained points are the same as obtained above. 

It is a circle of center at  2/,2   with radius 2,   

 

In general, by using the same method as in the preceding example, we can show that 

the graph   sinar , with 0a  , is a circle of radius of radius 2/a  of the type illustrated in 

Fig. (2.14a), and the graph:   cosar , with 0a  , is a circle of radius of radius 2/a  of the 

type illustrated in Fig. (2.14b), and the graph   

  

  

 

 

 

 

                          

                             Fig. (2.14a)                                                       Fig. (2.14b) 

 

 

 

 

  0 
6


 

4


 

3


 

2


 

3

2
 

4

3
 

6

5
   

r 0 2 22  32  4 32  22  2 0 
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**  A Cardioid Or  a Heart – Shaped ** 

Example :22 

Sketch the graph of the polar equation :       cos22r  

Solution: 

  0 
6


 

4


 

3


 

2


 

3

2
 

4

3
 

6

5
   

r 4 32   22   3 2 1 22   32   0 

 

Since the cosine function decreases from 1  to  -1  as   varies from 0 to   , it follows 

that r decreases from 4 to 0 in this    interval. Plotting these points in the  r   plane leads to 

the upper half of the graph sketched in Fig. (2.15).  If   increases from   to 2 , then the 

cosine function increases from -1  to  1 and  r increases from 0 to 4.   Plotting points for  

 2  gives us the lower half of the graph.  

 

 

 

 

 

              

                            Fig. (2.15b)                                                       Fig. (2.15a)                                                                                                        

 

Plotting points corresponding to  0 , in Fig. (2.16), the graph of any of the 

following polar equations, with 0a , is a cardioid . 

 

 

                                                                   

 

Fig. (2.16) 

If the polar equation is of the form:     cosbar      or     sinbar   

the graphs are called limacons. 

§§§§§§§§§§§§ 
 

The special case of limacons in which  ba    are cardioids. Some limacons contain 

a loop, as the following example. 
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Example :23 

Sketch the graph of the polar equation: cos42 r  

Solution 

  0 
6


 

4


 

3


 

2


 

3

2
 

4

3
 

6

5
   

r 6 322  222  4 2 0 
222

 

322

 
-2 

 

In the graph in Fig. (2.17),   varies from 0 to   gives  

us the lower half of the small loop and the upper part  

of the large loop, and from   to 2  gives us the rest  

of the graph.                                                                                                                  

§§§§§§§§§§§§ 
 

 

Example :24 

Sketch the graph of the polar equation:  cos
2

3
r                          

Solution 

  0 
6


 

4


 

3


 

2


 

3

2
 

4

3
 

6

5
   

r 5/2 
2

33
 

2

23
 2 3/2 1 

2

23
 

2

33
 1/2 

 

 

In the graph in Fig. (2.18),   varies from 0 to   gives  

us the upper half of the graph, and from   to 2  gives  

us the lower half of the graph. 

                                                                  

§§§§§§§§§§§§ 
 

 

 

 

 

Fig. (2.17) 

Fig. (2.18) 
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**  A Four-Leafed Rose **   

Example :25 
Sketch the graph of the polar equation:    2sinar    for  0a                   

Solution 

Instead of tabulating solutions. If   increases from 0 to 4/ , then 2  increase from 0  to 

2/  and Fig. (2.19) hence 2sin  increases from 0 to 2. It follows that  r increases from 0 to 

a  in the interval ]4/,0[  .  

If we next let   increases from  4/   to  2/ , then 2  changes from  2/      

to    and hence  r  decreases from a  to  0  in the interval 

]2/,4/[  .  This gives us the graph in the 1st quadrant, the 

2nd, 3rd, and 4th are the same. This graph is called a four-leafed 

rose .  In general, a polar equation of the form,  

nar sin     or    nar cos                                                                         

For any positive integer n greater than 1 and any non-zero real                            

number a  has a graph that consists of a number of  loops through the origin.                                                                                                                                                                                                

If n is even, there are 2n loops and if n is odd, there are n loops . 

Different cases are illustrated in Fig. (2.20a) [Lemniscates],  (2.20b) [Three leaved rose], and  

 (2.20c) [8  leaved rose]  

 

 

 

                                                            

 

 

 

         

                                                  

                                                            

 

 

 

 

 

 

Fig. (2.19) 

Fig. (2.20a) 

Fig. (2.20b) 

Fig. (2.20c) 
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Example :26 

Sketch the graph of the polar equation  r     for  0 . 

Solution 

The graph consists of all points that have polar coordinates of the  

form )c,c(  for any real number   0c  . Thus the graph  

contains the points ,)0,0( )2/,2/(  , ),(  , and so on.                         

As   increase  r  increase at the same rate, and the spiral winds around the  origin in a 

counterclockwise direction, intersecting the polar axis at ,...,4,2,0  as illustrated.                           

In general, The graph of the polar equation  ar   for any non zero real number a  is a 

Spiral of Archimedes.  

§§§§§§§§§§§ 

 

Example :27 

Find the polar equation for the hyperbola  1622  yx  

Solution 

Substituting,     sin,cos ryrx   

 16)sin(cos 222  r       or       162cos2 r   

 


2sec16
2cos

162 r  

§§§§§§§§§§§ 

Example :28 

Find the polar equation of an arbitrary line. 

Solution  

The general equation of an arbitrary line is: cybxa   

Substituting,     sin,cos ryrx   

crbra   sincos      or       cbar  )sincos(   

Then the polar equation of an arbitrary line is:  

 
 sincos ba

c
r


  . 

§§§§§§§§§§§ 

 

 

 

Fig. (2.21) 
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II-2  S l o p e   O f   T a n g e n t   L i n e   I n   P o l a r  F o r m 

In   x-y plane, the graph of )x(fy   may be symmetric with respect to the x-axis, the 

y-axis, or the origin. So in the r  plane, the graph of  )(fr   may be symmetric with 

respect to the polar-axis, the line 2/ , or the pole. 

Some typical symmetries are illustrated in Fig. (2.22) 

 

 

 

 

 

                          

 

        (i) about polar-axis                  (ii) about line 2/        (iii)  about pole 

Fig. (2.22) 

 

This leads to the next  R E S U L T S 

 

 

 

 

 

 

 

 

 

Tangent lines to graphs of polar equations may be found by means of the next theorem. 

 

Theorem  : 6 
 

 

 

 

 
 

(1) The graph of )(fr   is symmetric with respect to the polar axis if       )(f)(f  . 

(2) The graph of  )(fr   is symmetric with respect to the vertical line  2/  if   

      either :    

a)  )(f)(f        or      b)   ),r(f),r(f   

 (3) The graph of   )(fr    is symmetric with respect to the pole if either:   

       a)  r can be replaced by  -r      or      b)  )(f)(f    

The slope m of the tangent line to the graph of   )(fr    at   

the point ),( rP  is     





















 sinrcos

d

dr
cosrsin

d

dr
m  

 

 



Chapter 2                                                     Parametric   Equations 

                                                                                                              And Polar Coordinates 

 

 

 56 

Proof 

If ),( yx  are the rectangular coordinates of ),( rP   then, 

,sin)(fsinry,cos)(fcosrx   

   



 cos)('f)sin()(fsin)('fcos)(f

)d/dx(

)d/dy(

dx

dy
m  

              





sin)(fcos)('f

cos)(fsin)('f
  






sinrcos)ddr(

cosrsin)ddr(
 

§§§§§§§§§§§ 

Example :29 

      For the Cardioid   cos22 r    with    20 , find, 

      (a) the slope of the tangent line at  6/ . 

      (b) the points at which the tangent is horizontal or vertical.  

Solution 

    





sinrcos)ddr(

cosrsin)ddr(
m  






sin)cos22(cos)sin2(

cos)cos22(sin)sin2(
 

              





sin2)cossin2(2

cos2)sin(cos2 22

  





sin2sin

cos2cos
. 

 (a)  For  6/ ,   

)6/(sin)3/(sin

)6/(cos)3/cos(

sin2sin

cos2cos
m









  

             1
)2/1()2/3(

)2/3()2/1(





  

 

 (b)  To find  horizontal tangents,  0cos2cos  , then 

 0cos1cos2 2    or   0)1(cos)1cos2(   

which gives,       2/1cos       or     1cos  ,  i.e. 

                  3/5,3/       or            . 

The corresponding points at which the tangent is horizontal, )3/5,3(),3/,3(   and  ),0(   

For  the vertical tangent,  0sin2sin    

  0sincossin2     or     0)1cos2(sin     

i.e.   0sin    or    2/1cos  , then      ,0    or     3/4,3/2  . 

 

Since we found above that    gives us a horizontal tangent line, then the points at 

which the tangent is vertical are  )3/2,1(),0,4(    and  )3/4,1(  . 

§§§§§§§§§§§ 
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E x e r c i s e   ( 2 – 3) 

  

(I) Sketch the graph of the polar equations, 

      (1)   r = 5                        (2)     = 4/                (3) r = 3 cos                                       

      (4)   r = 1 + 2 cos        (5)   r = 4 + 4 sin        (6) r = 2 sin 4 

      (7)   r
2
 = 4 cos 2          (8)     r = 1 -  csc  

   

(II) Find a polar equation that has the same graph as the equation in x and y.               

      (1)   x
2
 + y

2
 = 16       (2)    2y = – x                        (3)   y

2
 – x

2
 = 4                    

       (4)   x y = 8               (5)   r
2
 cos

2
  = 8 r sin        (6)     r sin  = 6 r cos   

 

(III) Find an equation in x and y that has the same graph as the polar equation and sketch the  

        graph in  yx   plane  

       (1)  r cos  = 5         (2)  r sin  = – 2                  (3)  r sin  – 2 r cos  = 6          

       (4)  r = 4 sec          (5)  r sin  + r
2
 cos

2
  = 1    (6)  r

2
  sin 2 = 4  

 

(IV) If a and b are non-zero real numbers, prove that the graph of  cossin bar   

         is a circle, and find its center and radius. 

 

§§§§§§§§§§§ 
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II-3  I n t e g r a l s   I n   P o l a r   C o o r d i n a t e s 

 

Theorem  : 7 
 

 

 

 

 

 

 

 

 

 

 

 

                         

                        Fig. (2.23)                                                                 Fig. (2.24)                                                                                                                                      

 

    The area  A of the region bounded by the graphs Fig. (2.24)  of   )(fr   ,  )(gr   and 

the lines:   is, 

 

 

Example :30 

Find the area of the region bounded by the cardioid:     cos22r  

Solution                                                        

         
 2

0

2
2

0

2 d)cos22(
2

1
dr

2

1
A  

Replace, )2cos1(
2

1
cos2  ,   

 


  0
0

2sinsin86d)2cos2cos86(A 6     

§§§§§§§§§§§ 

If  f  is continuous and 0)(f   on  ],[  , where   20 , then the 

area A of the region bounded by the graphs Fig. (2.23) of   ),(fr  is, 

  








d)(f
2

1
dr

2

1
A 22 . 

 

  




d)(g)(f
2

1
A 22  

Fig.(2.25) 



Chapter 2                                                     Parametric   Equations 

                                                                                                              And Polar Coordinates 

 

 

 59 

Example :31 
Find the area  of the region  that is inside the circle   cos2r  and outside the circle 1r  . 

Solution 

The points of intersection are )3/,1(),3/,1(   .  

      




3/

3/

22 d)1()cos2(
2

1
A  

                  
 3/

0

22 d)1()cos2(                                                                

                    
 3/

0

2 d1cos4   
 3/

0

d1)2cos1(2  

                  91.1
2

3

3



                                                                                                           

§§§§§§§§§§§ 

Example :32 
Find the area  of the region R that is inside the cardioid   

cos22 r   and outside the circle 3r . 

Solution    

The points of intersection are )3/,3(),3/,3(   .  

  




3/

3/

22 d)3()cos22(
2

1
A                                                

                
 3/

0

2 d5cos8cos4  

                 
 3/

0

d5cos8)2cos1(2  65.43
2

9
   

§§§§§§§§§§§ 
Example :33 

Find the area  of the region R that lies inside the circle 1r    and outside the cardioid   

 cos1r    

 Solution    

The points of intersection are )2/,1(),2/,1(  .  

 




2/

2/

22 )cos1()1(
2

1




 dA  

            









2/

0

22 )cos1()1(
2

1
2



 d   

2/

0

2coscos2



 d            

           






 


 2/

0

d
2

2cos1
cos2 =   

4
2

4

2sin

2
sin2

2/

0










 







   

§§§§§§§§§§§ 

Fig. (2.26) 

Fig. (2.27) 

Fig. (2.28) 
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Example :34 

Find the area of the region bounded by the graph of the polar equation:  

2cos92 r  

Solution    

     A = 
2

1
 × 4 

 4/

0

9 cos 2 d  

             = 18 

4/

02

2sin











= 

2

18
 [1 – 0] = 9 .                                                 

§§§§§§§§§§§ 
 

Example :35 

Find the area  of the region between the inner and outer, loops of the Limacons  

 cos21r  

Solution 

It is easy to verify that r = 0  when 3/  and when 

3/5  . The outer loop is formed by having   increase from 

3/ to 3/5 . Thus the area within outer loop :                                             

 




3/5

3/

2
1 d)cos21(

2

1
A  

       

3/5

3/

2 ]cos4cos41[
2

1




 d                                 

                   
2

33
22sinsin43

2

1 3/5
3/ 


  

 

The lower half of the inner loop is formed when   increases from 0 to 3/ , and the 

upper half when   increases from 3/5   to 2  (verify this). Therefore,  we have area within 

 inner loop :  

  




 2

3/5

2
3/

0

2
2 d)cos21(

2

1
d)cos21(

2

1
A              

                           
2

33

4

33

24

33

2






  

Thus,   21 AAA   

          






























2

33

2

33
2 34.833   

§§§§§§§§§§§ 

Fig. (2.29) 

Fig. (2.30) 
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Example :36 

Find the area  of the region bounded  by the circle sin2r   and the limacons  

 sin2/3r . 

Solution 

The points of intersection are )6/5,1(),6/,1(  .                              

From the symmetry of the region,                  

 




 


6/

0

2
sin2

2

1
2



 dA
















2/

6/

2

sin
2

3

2

1




 d      

            68.0
8

315

4

5



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Fig. (2.31) 
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E x e r c i s e   ( 2 –4) 

 

 (I)  Find the area of the region bounded by the graph of the polar equation, 

       (1)   r = 2 cos           (2)   r = 5 sin          (3)   r = 1 – cos                         

      (4)   r = 6 -  6 sin     (5)   r
2
 = 9 cos 2     (6)   r

2
 = 4 sin 2                                           

 

(II)  Find the area of the region R. 

        (1) R = 











 er0,
2

0:),r(  

        (2) R =   2er0,0:),r(  

        (3) R =   2r0,0:),r(  

 

(III) Find the area of the region bounded by one loop of the graph of the polar Equation, 

       (1)  r
2
 = 4 cos 2         (2)   r = 2 cos 3           (3)   r = sin 6                                                   

       (4)   r = 3 cos 5         (5)     x = 0,  y = 0  , x = 4     and     x
2
 + y

2
 = 25 

 

(IV)  Find the area of the region that is inside the graphs of both equations, 

       (1)    r = 2 + 2 sin ,        r = 1           (2)   sin2r                r = 1 

       (3)  1,2cos42  rr              (4)   sin2r ,        cos2r  
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II-4  P o l a r   E q u a t i o n s   O f   C o n i c   S e c t i o n s 

The conic sections in Cartesian coordinates were studied in the first chapter, Polar 

coordinates are especially important in astronomy and astronautical engineering because 

satellites, moons, planets, and comets all move approximately along ellipses, parabolas, and 

hyperbolas that can be described with a single relatively simple polar coordinate equation.  

We develop that equation here after first introducing the idea of a conic section’s 

eccentricity. The eccentricity reveals the conic section’s type (circle, ellipse, parabola, or 

hyperbola) and the degree to which it is “squashed” or flattened. 

 

We can define the conic sections in a more general form as “ The set of all points moves such 

that its distance from a fixed point to its  distance from a fixed line is a constant ratio”. The 

fixed point is called focus “F”, the fixed line is called directrix “d”, and the constant ratio is 

called eccentricity “e”. 

 

Definition : 3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To find the polar form for the conic sections,  Let ),r(P   is 

the point moving according to the definition,  F is the fixed 

point at origin and L is the fixed line.  

From Fig. (2.32), r)F,P(d  ,  cosrd)Q,P(d , 

Where d is the distance between F and L.              

verticesbetween  distance

focibetween  distance
ety    Eccentrici   

(1)  The eccentricity of the ellipse : 1
b

y

a

x
2

2

2

2

   ( )ba   is 

                  1
a

ba

a

c
e

22




  

(2) The eccentricity of the hyperbola :  1
b

y

a

x
2

2

2

2

   is 

                  1
a

ba

a

c
e

22




  

        (3)  The eccentricity of the parabola :is     1e   

Fig (2.32) 
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Now the eccentricity :  



cosrd

r

)Q,P(d

)F,P(d
e                                              

 cosreder    or     decosrer  , then: 
)cose1(

de
r


  

Theorem  : 8 
 

 

 

 

 

 

 

 

 

 

Example :37 

Describe and sketch the graph of the polar equation :   



cos23

10
r . 

Solution  

Divide both numerator and denominator by 3, 

cos
3

2
1

3/10



r ;  then   1
3

2
e  

Thus, it is an ellipse with major axis along the polar axis.                            

To find the vertices we put  0  and    .                                                                               

0 ,  2r   ,   then     )0,2(V , 

  ,  10r   , then     ),10( V , 

then    122 a    or       6a . The center of the ellipse at ),4( O                                    

since  6,3/2,/  aeace ,     then     4c  ,  and    2022  cab .   The 

foci are  )0,0(F and   ),8( F  

§§§§§§§§§§§ 
 

 

 

A polar equation, that has one of the forms, 

cos1 e

de
r


     or     

sin1 e

de
r


  

is a conic section with major axis along the polar axis or the line 2/  

respectively. The conic section is a Parabola if  1e , Ellipse if  10  e , or 

Hyperbola if 1e . 

 

 

Fig. (2.33) 
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Example :38 

Describe and sketch the graph of the polar equation :   :    
sin26

12


r .       

Solution 

r = 
 Sin26

12  =  
 Sin1

2

3

1
, then :  e = 

3

1
 < 1 

The conic section is Ellipse with major axis, the y-axis 

To find the vertices we put  2/  and  2/3 .   

  = 
2


     r =

26

12


  =  

8

12
  = 

2

3
,  V1 = (

2

3
,

2


)  

  = 
2

3
   r  =  

26

12


 =  3,   V2 = (3,

2

3
) 

 2a  =  
2

3
+ 3  =  

2

9
,  then      a =

4

9
 

 c  =  ea  =
3

1
 × 

4

9
= 

4

3
                                                              

 b
2
  =  a

2
 – c

2
  = 

16

81
 – 

16

9
 =  

2

9
,   then     b  =  

2

3
 

§§§§§§§§§§§ 
Example :39 

Describe and sketch the graph of the polar equation :   



sin32

10
r  

Solution 

Divide both numerator and denominator by 2,  





sin
2

3
1

5
r ;  then      .12/3e   

Thus, it is  hyperbola with major axis along the line 2/ .     

To find the vertices we put 2/  and  2/3 .  

2/  ,     2r   ,     then      )2/,2(V  , 

2/3 ,  10r    , then     )2/3,10(V  , 

then    
8a2 

   or       4a  .  The center of the hyperbola  

at )2/3,6(O   

since  6c,2/3e,a/ce  ,     

 then    ,  20acb 22  .                                                                 

The foci are  )2/,0(F  and   )2/3,12(F  .                                       

§§§§§§§§§§§ 

Fig. (2.34) 

Fig. (2.35) 
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Example :40 

Describe and sketch the graph of the polar equation:   

                       
cos44

15


r  

Solution 

Divide both numerator and denominator by 4, 

cos1

4/15


r ;     then      .1e  

The graph is a parabola with major axis along  

the polar axis.                                                             

0 ,    r   undefined                                                                                         

  ,  8/15r   , then     ),8/15( V . 

The parabola open right with vertex at  ),8/15( V , and  4/152  pd ,     i.e.    

8/15p .  Then the focus  )0,0(F   at the pole (origin), and the directrix 4/15: xd  

§§§§§§§§§§§ 
 

Example :41 

Describe and sketch the graph of the polar equation:  
cos22

3


r  

                        

Solution 

    r = 
cos22

3


= 

cos1

2/3


,    then    e = 1 . 

The conic section is Parabola with vertex at the polar-axis. 

 = 0      r = 
4

3
  ,    V = (

4

3
, 0) 

 = 
2


    r = 

2

3
 

 = 
2

3
  r = 

2

3
 

de = 3/2,   then  d  =  3/2,  i.e.  

the distance between the directrix and focus =  2 p = 3/2. 

Then the focus  )0,0(F   at the  pole (origin), and the directrix  

2/3: xd  

§§§§§§§§§§§ 

Fig.(2.36

) 



Chapter 2                                                     Parametric   Equations 

                                                                                                              And Polar Coordinates 

 

 

 67 

Example :42 

Find an equation in x and y that has the same graph as the polar equation , 




sin44

15
r  

Solution 

 15)sin44(r    or      15sinr4r4   

 15y4yx4 22   

Squaring both sides and simplifying, 

        225y120y16)yx(16 222     or   225y120x16 2   

Which is an equation of parabola. 

§§§§§§§§§§§ 
 

Example :43 

Find a polar equation of the conic with a focus at the pole, eccentricity   2/1e   

and directrix  sec3r . 

Solution 

The directrix : sec3r ,   3cos r  i.e.  3x . 

Since the focus at the pole, then the distance d  between the focus and directrix  3d .   

Then, 

       
 cos2

3

cos)2/1(1

)2/1()3(

cos1 








e

de
r  

§§§§§§§§§§§ 
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E x e r c i s e   ( 2 – 5) 

  

(I)  Describe and sketch the graph of the polar equations, 

     (1)   r = 
sin26

12


.     (2)   r = 

cos62

12


.        (3)   r = 

cos22

3


.                  

     (4)   r = 
sin33

2


.       (5)   r = 

2cos

4


.         (6)   r = 

4cos

2


.         

     (7)   r = 
1sec2

sec4




        (8)   r = 

1sec4

sec2




          (9)   r = 

cos4

6


.                      

 

(II)  Find the equations in x and y for the following polar equations 

      (1)   r = 
sin26

12


.     (2)    r = 

cos62

12


.       (3)   r = 

cos22

3


.                 

      (4)   r = 
sin33

2


.         (5)   r = 

cos4

6


.            (6)   r = 

cos41

6


. 

 

(III)  Find a polar equations of the conic with focus at the origin and the given eccentricity 

and equation of the directrix. 

     (1)   e =
3

1
,   r = 2 sec                       (2)   e =

2

1
,    r = 3 csc                                                 

     (3)   e = 1,     r cos  = 5                      (4)   e = 1,      r sin  = 4 

     (5)  e = 3,      r =  –  4 sec                  (6)    e = 2,     r sin   =  –  3  

     (7)   e = 
5

2
,  r = 4 csc                   (8)   e = 

3

2
,     r cos    = 3 

 

 (IV)  Find the slope of the tangent line to the conic at the point that corresponding to the  

         given . 

     (1)  r = 
sin26

12


,   

6


               (2)  r = 

cos62

12


,    

3


                    

     (3)  r = 
cos62

12


,    

2


              (4)  r = 

sin26

12


,     

2


   

     (5)  r = 
cos62

12


,    

3


              (6)  r = 

sin26

12


,     0  

§§§§§§§§§§§ 
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CHAPTER 3 

 

 

 

 
 

 

Functions with two or more independent variables appear more often in science than 

functions of a single variable, and their calculus is even richer. Their derivatives are more 

varied and more interesting because of the different ways in which the variables can interact. 

Their integrals lead to a greater variety of applications. The mathematics of these functions is 

one of the finest achievements in science.  

 

1-   F u n c t i o n s    Of   S e v e r a l   V a r i a b l e s  

In this section, we define functions of more than one independent variable and discuss 

ways to graph them , we start by definitions to the function of several variables. 

 

Definition  :  1 

 

 

 

 

 

 

 

 

If  f  is a function of two independent variables, we usually call the independent 

variables x and y and the domain of  f is a region in the xy-plane. If  f  is a function of three 

independent variables, we call the variables x, y, and z and the domain is a region in space.  If 

the domain is not specified, then it is automatically taken to be the largest set for which the 

expression defining  f is meaningful. 

 

 

 

 MULTIVARIABLE FUNCTIONS 

( FUNCTIONS OF  SEVERAL VARIABLES ) 

Suppose D is a set of n-tuples of real numbers )x,...,x,x( n21 .  A real valued 

function f  on D is a rule that assigns a real number,   )x,...,x,x(fw n21    to 

each element in D. The set D is the function's domain. The set of w-values taken on 

by f  is the function's range. The symbol w is the dependent variable of f  and f   is 

said to be a function of the n independent variables )x,...,x,x( n21 . 
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Example : 1 

Let 2xy)y,x(f  . Find the domain of  f  and sketch it.  

Solution 

The domain D is the set of all pairs (x, y) with: 

         22 xyor0xy  .                                                      

The parabola: 2xy  ,  is the boundary of the domain.  

The points above the parabola  make up the domain's  interior.                                                                                                         

                                                               §§§§§§§§§§§§ 
                                    

Example : 2 

Find the domain of the function  22 yx100)y,x(f     

Solution 

The function is defined for all values of  x and y,  

 i.e. The domain is the entire planexy  . 

§§§§§§§§§§§§ 
 

Example : 3 

Find the domain of the function    







 




)1yx1

zcos
)z,y,x(f

22

1

 

Solution  

The domain consists of all triples )z,y,x(  with 1yx 22                                                                                                                                   

and  1z .  This is the region outside of cylinder and bounded  

by the two planes  1,1  zz   as in Fig. (3.2). 

 

A function of three variables is defined just as in the above definition, except that the 

domain is the set of ordered triples )z,y,x( ) and the values of  f  are denoted by )z,y,x(f . 

§§§§§§§§§§§§ 

 

 

 

 

 

 

Fig. (3.1) 

Fig. (3.2) 
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2-   G r a p h s    O f    F u n ct i o n s    O f    T w o   V a r i a b l e s  

Definition  :  2 

 

 

 

 

 

 

The graph of an equation in the three variables  x, y, and z is a surface in space. 

The graph of a linear equation:  dzcybxa    is a plane. The simplest planes are the 

planes :   0xx  ,  0yy   and  0zz   .  They are represented in Fig. (3.3) 

 

 

 

 

 

 

       

 

The graph of a second degree equation in x, y,  and z is a surface in space called a 

quadratic surface. These surfaces correspond to the conic sections in the plane. There are 

several types of quadratic surfaces. We shall present each of them in its simplest form. 

 

Example : 4 

 The ellipsoid :  1
c

z

b

y

a

x
2

2

2

2

2

2

  

cuts the coordinate axis at   

)0,b,0(,)0,0,a(    and  )c,0,0(  .  Fig. (3.4) 

                                              
§§§§§§§§§§§§ 

                                                                       

 

If any two of the semi-axes  a,  b,  and  c  are equal, the surface is an ellipsoid of 

revolution. If all three are equal, the surface is a sphere. 

The set of points in the plane where a function )y,x(f  has a constant value 

c)y,x(f   is called a level curve of  f. The set of all points ))y,x(f,y,x(  in space 

for )y,x(  in the domain of f, is called the graph of f. The graph of f  is also called 

the surface  )y,x(fz  . 

 

Fig. (3.3) 

Fig.  (3.4) 
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Example : 5 

The  elliptic paraboloid :   
c

z

b

y

a

x
2

2

2

2

 , 

Is symmetric with respect to the planes  0x    and  0y  . The only intercept on 

the axes is the origin. Except for this point, the surface lies above or entirely below the xy – 

plane, depending on the sign of  c. Fig. (3.5) 

 

 

 

 

                                                                   

                                                                     

 

 

If   a  =  b,   the elliptic paraboloid is called a circular paraboloid. In this case the 

cross sections of the surface by planes perpendicular to the z-axis are circles centered on the z-

axis. 

§§§§§§§§§§§§ 
Example : 6 

 The elliptic cone:   
2

2

2

2

2

2

c

z

b

y

a

x
    

Is symmetric with respect to the three coordinate planes. Fig. (3.6) 

  

 

 

 

 

 

 

 

 

 

 

If  a  =  b, the cone is a right circular cone 

§§§§§§§§§§§§ 
 

Fig. (3.5) 

 

Fig. (3.6) 
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Example : 7   

The hyperboloid of one sheet :  1
c

z

b

y

a

x
2

2

2

2

2

2

 ,  

is symmetric with respect to each of the three coordinate planes . The plane 0zz   cuts the 

surface in an ellipse with center on the z-axis and vertices on one of the hyperbola. Fig. (3.7) 

 

 

 

 

 

 

 

 

 

 

 

§§§§§§§§§§§§ 
Example : 8  

The hyperboloid of two sheets:  1
2

2

2

2

2

2


c

z

b

y

a

x
, 

is symmetric with respect to each of the three coordinate planes. The plane 0z  does not 

intersect the surface, in fact, for a horizontal plane to intersect the surface, we must have   

cz  . 

 

 

 

 

 

 

 

 

 

 

§§§§§§§§§§§§ 
 

Fig. (3.7) 

Fig. (3.8) 
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Example : 9 

The hyperbolic paraboloid:  0c;
c

z

a

x

b

y
2

2

2

2

 , 

has symmetry with respect to the planes  0x   and  0y   . 

 

 

 

 

 

 

 

 

 

 

 

§§§§§§§§§§§§ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3.9) 
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E x e r c i s e   ( 3– 1) 

 

Determine the domain of the function ),( yxf  and sketch it. 

  221)y,x(f)1( yx                      yx3)y,x(f)2(   

164)y,x(f)3( 22  xy                   2yx)y,x(f)4(   

yyx 254)y,x(f)5( 22                   
4yx

1
)y,x(f)6(

22 
  

)yx(ln)y,x(f)7(                               y1x)y,x(f)8(   

)yx(sin)y,x(f)9( 1                            )1yx(ln)y,x(f)10( 22   

xy1

1
)y,x(f)11(


                               )yx(cos)y,x(f)12( 1    

§§§§§§§§§§§§ 
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3-  L i m i t s   A n d   C o n t i n u i t y 

         This section treats limits and continuity for multivariable functions. If the values of 

)y,x(f  lie arbitrarily close to a fixed real number L for all points )y,x(  sufficiently close to 

a point ),( 00 yx , we say that f  approaches the limit L as ),( yx  approaches ),( 00 yx .  

We say that a function )y,x(f  approaches the limit  L as )y,x(  approaches ),( 00 yx  and 

write,     L)y,x(flim
)y,x()y,x( 00




 

 

Theorem : 1 

 

 

 

 

 

 

 

 

 

 

 

. 

Example : 10 

      Evaluate the following limits, 

   (i)  426)2xy(lim
)3,2()y,x(




. 

   (ii)  52484)yx3yx(lim 22

)4,1()y,x(



. 

   (iii)  1)xsinyx4(lim 232

)1,2/()y,x(



. 

§§§§§§§§§§§§ 
 

If  the limit at origin )0,0(),( yx , and the value of  limit 0/0  , we can use a 

simple method by considering the limits through the set of all lines passing through the origin. 

If this limit depend on the slope of the lines, then the limit depend on the path and so the limit 

does not exist.  

If  L)y,x(flim
)y,x()y,x( 00




 and   M)y,x(glim
)y,x()y,x( 00




  , Then, 

1. Sum & Difference Rules:   MLgflim
)y,x()y,x( 00




. 

2. Product Rule:   MLgflim
)y,x()y,x( 00




. 

3. Constant Multiple Rule :  LKfKlim
)y,x()y,x( 00




,       K  is a constant 

4. Quotient Rule : 
M

L

)y,x(g

)y,x(f
lim

)y,x()y,x( 00




,       0M  . 

5. Power Rule :    If  m  and  n  are integers, then: 

             n/mn/m

)y,x()y,x(
L)y,x(flim

00



    provided  n/mL is a real number 
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Example : 11 

Show that the following limits does not exist 

22)0,0()y,x( yx

xy
lim)i(


                 ,          

22

22

)0,0()y,x( yx

yx
lim)ii(






                             

Solution 

2220x22

mxy

)0,0()y,x(22)0,0()y,x( xmx

)mx(x
lim

yx

xy
lim

yx

xy
lim)i(







 




 

                                        
220x m1

m

m1

m
lim








. 

The limit depend on the slope of the lines m, i.e. the limit depend on the path and so 

the limit does not exist.  

222

222

0x22

22

mxy

)0,0()y,x(22

22

)0,0()y,x( xmx

xmx
lim

yx

yx
lim

yx

yx
lim)ii(




















                                          

                                        
2

2

2

2

0x m1

m1

m1

m1
lim












 

§§§§§§§§§§§§ 
 

The limit depend on the slope of the lines  m, i.e. the limit depend on the path and so 

the limit does not exist.  

 

As with functions of a single variable, continuity is defined in terms of limits. 

 

Definition  :  3 

 

 

 

 

 

 

 

 

A function is continuous on a region D, if it is continuous at each point in D. 

 

 

A function )y,x(f  is continuous at the point ),( 00 yx , if : 

      1. f  is defined at )y,x( 00    ,   

      2. )y,x(flim
)y,x()y,x( 00

exist 

      3. )y,x(f)y,x(flim 00
)y,x()y,x( 00



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One of the consequences of Theorem (3.3.1) is that algebraic combinations of continuous 

functions are continuous at every point at which all the functions involved are defined. This 

means that sums, differences, products, constant multiples, quotients, and powers of 

continuous functions are continuous where defined. In particular, polynomials and rational 

functions of two variables are continuous at every point at which they are defined. 

If ),( yxfz   is a continuous function of x and y, and )(zgw   is a continuous function 

of z, then the composite  )),(( yxfgw   is continuous. Thus, the polynomials, exponential, 

sine, cosine, and logarithmic functions are continuous at every point ),( yx . 

As with functions of a single variable, the general rule is that composites of continuous 

functions are continuous. The only requirement is that each function be continuous where it is 

applied. 

 

Example : 12 

Find all points where the given function is continuous: 

  (i)  
yx

x
)x(f

2 
       ,          (ii)  

22 yx

3x
)x(f




  

Solution 

 (i)  The function is a quotient of two polynomials (continuous functions), and so it is 

continuous at any point except at the denumerator equal zero. So the function is continuous at 

all point except at 2xy  . 

 (ii)  The function is a quotient of two continuous functions, and so it is continuous at any 

point except at the denumerator equal zero. The denumerator equal zero at )0,0()y,x(  , 

then )y,x(f is continuous for all values of )y,x( except at )0,0()y,x(   . 

§§§§§§§§§§§§ 
Example : 13 

Discuss the continuity of the following function 

 














)0,0()y,x(if0

)0,0()y,x(if
yx

yx

)x(f 22  

Solution 

The function is also continuous at any point )0,0()y,x(  .    At )0,0()y,x(   the 

function is defined, 0)0,0(f  , but the limit as  )0,0()y,x(   does not exist and so the 

function is discontinuous at the origin.  

§§§§§§§§§§§§ 
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E x e r c i s e   ( 3– 2) 

  

(I)  Find the limits of the following functions if it exists. 

  
)2,4(),(

lim)1(
yx

x
3

xy 23                              
3yx

5y2x3
lim)2(

22

22

)0,0()y,x( 




  

  
)2,0(),(

lim)3(
yx x

yxsin
                                    

1x

ysinx
lim)4(

2)0,1()y,x( 
 

22

22

)0,0()y,x( yx

yx
lim)5(






                             

yx

x
lim)6(

2)0,0()y,x( 
 

22)0,0()y,x( yx

yx
lim)7(


                              

42

2

)0,0()y,x( yx

yx
lim)8(


                            

24

2

)0,0()y,x( yx

yx
lim)9(


                               

44

22

)0,0(),(
lim)10(

yx

yx

yx 
                                 



















 1yx

yx
coslim)11(

22

22

)0,0()y,x(
              









 3yx

xy
sinlim)12(

)0,0()y,x(
. 

 

(II)  Discuss the continuity of the following functions, 

3yx

1yx
)y,x(f)1(

22

22




                            

1yx

1y3x2
)y,x(f)2(




  

3yx

1yx
)y,x(f)3(

22

22




                            

ye

xy
yxf




1

cos
),()4(  

x

e
yxf

yx

cos1

1
),()5(








                                  
yxcos2

yx
)y,x(f)6(

22




   

yx

y x




2

sin
)y,x(f)7(                                       

2yx

)yx(cos
)y,x(f)8(




  

 (9) 
















)0,0()y,x(if0

)0,0()y,x(if
yx

yx

)y,x(f 22

22

 

(10)














)0,0()y,x(if0

)0,0()y,x(if
yx

x

)y,x(f 22

2
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4-   P a r t i a l    D e r i v a t i v e s 

   4 .1   First  Order  Partial  Derivatives 

 

As in functions of single variable )x(f , the derivative )x('f  is defined as, 

      
h

)x(f)hx(f
lim)x('f

0h





. 

An analogous procedure can be applied to functions of several variables, we can obtain 

partial derivatives for the function of several variables with respect to each independent 

variable. 

 

 

Definition  :  4 

 

 

 

 

 

 

 

 

 

 

In the definition of  xf   , y  is held fixed, only x is allowed to vary. If x is fixed and the only  

y  is allowed to vary, then  yf   is the derivative with respect to y. 

We calculate 
x

f




 by differentiating  f  with respect to x in the usual way while treating  y as a 

constant, and we can calculate 
y

f




 by differentiating  f  with respect to y in the usual way 

while holding x constant. 

The definitions of the partial derivatives of functions of more than two independent variables 

are like the definitions for functions of two variables. They are ordinary derivatives with 

respect to one variable. 

 

 

Let  )y,x(f  be a function of two variables, the first partial derivatives of 

)y,x(f  with respect to x and  y are the function xf   and  yf  defined by : 

xf  = 
h

)y,x(f)y,hx(f
lim)y,x(f

x 0h









. 

yf  = 
h

)y,x(f)hy,x(f
lim)y,x(f

y 0h









. 
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Example : 14 

Find the first partial derivatives of the following functions 

(i)  1y2x3yx2yx)y,x(f 223  . 

(ii)   xy2 eyxz            ,                (iii)   32 zyxw   

Solution 

(i) 3yx4yx3)y,x(f 22
x         

           2x2yx2)y,x(f 23
y  . 

(ii)    xy23xy2xy2 e)yyx(eyeyyx
x

z





 

                   xy22xyxy2 e)yx2yx(eyx2exyx
y

z





 

 

(iii)   22332 zyx3
z

w
,zyx2

z

w
,zy

x

w















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Example : 15 

Find the first partial derivatives of the following functions 

(i)  yxsiny)y,x(f  .      ,      (ii)  
xcosy

yx
)y,x(f


  

Solution 

 (i)  yxcosy)y()yx(cosy
x

f 2



 

           yxsinyxcosyxyxsin)x()yx(cosy
y

f





 

 

2

2

2 )xcosy(

xsinxyxcosyy

)xcosy(

)xsin(xy)y()xcosy(

x

f
)ii(














. 

           
22 )xcosy(

xcosx

)xcosy(

)1(yx)x()xcosy(

y

f












 

§§§§§§§§§§§§ 
Example : 16 

Find  
x

z




 for the function z defined in terms of  x and y by the equation, 

          yxzlnzy   

Solution 

    yx
x

zzy
x










ln  

 1
1











x

z

zx

z
y ,   i.e.  1

1















x

z

z
y .,Then      

1zy

z

x

z







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   4-2  Higher  Order  Partial  Derivatives. 

Higher order partial derivatives may be defined in a similar way, provided that the 

earlier ones are functions of ),( yx  and are continuous at the point under consideration. This 

second partial derivatives of )y,x(f  are defined as follows. 

 

 

 

 

 

 

 

The second  partials derivatives yxxy f&f   are called mixed partials derivatives and 

the following theorem illustrate their relations 

 

Theorem : 2   Euler's Theorem ( The Mixed Derivative Theorem) 

 

 

 

 

 

 

Example : 17 

 Find all second partial derivatives of the function:  yxyxyx)y,x(f 323   

Solution 

       yyxyxf
x

f
x 



 32 23 ,        xyx3xf
y

f 223
y 




 

 3

2

2

xx y2yx6
x

f

xx

f
f 





















  

 1yx6x3
y

f

xyx

f
f 22

2

xy 




















  

 1yx6x3
x

f

yxy

f
f 22

2

yx 




















  

 yx
y

f

yy

f
f yy

2

2

2

6




















  

Note that in the above example, the partials derivatives yxxy f&f  are equal.  

§§§§§§§§§§§§ 

  xxxx2

2

ff
x

f

x

f

x






















 ,   xyyx

2

ff
xy

f

x

f

y





















  

  yxxy

2

ff
yx

f

y

f

x






















 ,    yyyy2

2

ff
y

f

y

f

y






















 

If )y,x(f  and its partial derivatives yxyx f,f,f  and xyf  are defined throughout 

an open region containing a point )b,a(  and are all continuous at )b,a( , then 

)b,a(f)b,a(f xyyx   
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In the same way the third and higher partial derivatives can defined, for examples 

 xyy2

3

f
yx

f





      and     xxyy22

4

f
yx

f





 

 

Example : 18 

 If )yx(ln)yx(cosw  , show that:  0
y

w

x

w
2

2

2

2










 

Solution 

yx
yx

x

w






 1
)sin(    ,          

yx
yx

y

w






 1
)sin(  

22

2

)(

1
)(cos

yx
yx

x

w







 ,           

22

2

)(

1
)(cos

yx
yx

y

w







 

L.H.S.  =
2

2

2

2

y

w

x

w









 

            = 
























22 )(

1
)(cos

)(

1
)(cos

yx
yx

yx
yx  =   0  =  R.H.S. 
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E x e r c i s e   ( 3– 3) 

  

(I) Find all the first partial derivatives of the given functions, 

23 yx2yx3)y,x(f)1(          10yx)y,x(f)2(   

22)y,x(f)3( yx             
y22 exsinyxcos)y,x(f)4(   

)z/y(cosx)z,y,x(f)5(          yxxtanyysinx)y,x(f)6(   

)zyx(sin)z,y,x(f)7( 1          
5 2323 2 yxyx2x)y,x(f)8(   

tsecsr)t,s,r(g)9(             xzsinyyzcosx)z,y,x(f)10(   

xy

xy

sin

e
)y,x(f)11(               xyzlnexy)z,y,x(f)12( zy   

 (II) Find the required partial derivatives at the indicated points 

zcosyx2yxw)1( 22  .           )6/,1,0(
z

w2






x
 

zxy eyxeyzexzw)2(  .          )6/,1,0(
z

w2






x
 

z
)z,y,x(u)3(

22

x

yx 
 ,                    

xy 

 u2

 (1, 3, 1) 

3

23

z

x
)z,y,x(u)4(

y

yx 
 ,                  

xy 

 u2

 (2, 2, 1) 

tsine)t,s,r(f)5( sr ,                 

       
str 

 f3

(3, 1, 0)  

 

(III) For the following functions, confirm that the mixed second order partial derivatives are  

        equals, 

)y3x2(ln)y,x(f)1(                    xlnyeylnx)y,x(f)2( x   

4322 yxyxyx)y,x(f)3(       xlnyeylnx)y,x(f)4( x   

ysinhxycoshx)y,x(f)5( 2       y22 exxlny)y,x(f)6(   
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(IV)  Show that   )y,x(u  and )y,x(v  satisfy the Cauchy-Riemann equations: 

y

v

x

u









  and   

x

v

y

u









 

yx2v;yxu)1( 22   

ysinev;ycoseu)2( xx   

x/ytan2v;)yx(lnu)3( 122   

 

(V)  Show that the following functions satisfy the two-dimensional Laplace equation: 

0
y

f

x

f
2

2

2

2










 

x2cose)y,x(f)1( y2              ,               22 yxln)y,x(f)2(  . 

 

 

(VI)  Show that the following functions satisfy the third-dimensional Laplace equation: 

0
z

f

y

f

x

f
2

2

2

2

2

2















 

222 z2yx)z,y,x(f)1(           ,       z5cose)z,y,x(f)2( y4x3   

§§§§§§§§§§§§ 
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5-  T h e   I n c r e m e n t s   A n d   D i f f e r e n t i a l s 

 If  )y,x(fw   is a function of two variables x and y, then the symbols x and 

y denotes increments of x and  y  respectively. In terms of increments, the partial derivatives 

may be written as, 

x

)y,x(f)y,xx(f
lim)y,x(f

0x
x







, 

       
y

)y,x(f)yy,x(f
lim)y,x(f

0y
y







. 

The increment w  represents the change in the function value if )y,x( changes to 

)yy,xx(  , then the increment w  of  )y,x(fw  is, )y,x(f)yy,xx(fw   

Definition  :  5 
 

 

 

 

 

  

 

If  )z,y,x(fw  , then, the differential dw of the dependent variable  w  is, 

dz
z

w
dy

y

w
dx

x

w
dw














  

where dy,dx   and  dz  are the differentials of the independent variables x, y  and  z. 

The extension to functions of more variables is similar. 

 

Example : 19 

If  xyx3w 2  , find dw and use it to approximate the change in w if )y,x( change 

from (1, 2) to (3.01, 1.98). How does this compare with the exact change in w? 

Solution 

dy
y

w
dx

x

w
dw









 =  dy)x(dx)yx6(   

Substituting, 01.0x,2y,1x   and 02.0y  , we obtain 

dw =  06.0)02.0()1()01.0()26(   

To obtain the exact value, 

  
0605.0)2)(1()1(3)98.1)(01.1()01.1(3

)2,1(w)98.1,01.1(wdw

22 


 

Error   =   0005.006.00605.0   

§§§§§§§§§§§§ 

Let  )y,x(fw  , and let x and y denotes increments of  x  and  y, respectively , 

(1) the differentials dx and dy of the independent variables  x  and  y  are 

xdx       and     ydy   

(2) the differential  dw  of the dependent variable w is,  

                  dy
y

w
dx

x

w
dy)y,x(fdx)y,x(fdw yx









       
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Example : 20 

The radius and height of a right cylinder cone can be measured to be 12 and 36 cm 

respectively. If the measurement is accurate to within  0.05.  Approximate the maximum 

possible error in the calculated volume of the cylinder. 

Solution 

     The volume of the cone:  hr
3

1
V 2 . The differential of V is: 

.dhr
3

1
drhr

3

2
dh

h

V
dr

r

V
dV 2









  

The possible error in the radius measurement is: 06.0)0005.0()12(dr   

The possible error in the height measurement is: 18.0)0005.0()36(dh   

Therefore, the maximum error in computing the volume is approximately, 

.cm4.81)18.0()12(
3

1
)06.0()36()12(

3

2
dV 32   

§§§§§§§§§§§§ 
 

 

Example : 21 

 Calculate the approximate value of  01.3)02.1( . 

Solution. 

     Consider the function:  yxz  ,with, 3yand1x  ,  and  

01.0dyand02.0dx  , then, 

           dyxlnxdxxydy
y

z
dx

x

z
dz y1y 









                                     

                 06.0)01.0()1(ln)1()02.0()1()3( 32   

Hence,      06.106.0)1()02.1( 3

0

01.3  dzzz  

§§§§§§§§§§§§ 
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E x e r c i s e   ( 3– 4) 

 (I)  Find the differentials for the given functions 

(1) z = x
2
 – 3x y + y

2
         5223)2( yyxxz     (3)  z = tan

–1
 (x

2
 y)                 

31sin)4(
2

xez y             (5) w = xy
2
 ln z                yxzzyxw lnln)6(   

(7) w = x cos y + y sin z                       yhxxzw 11 secsinh)8(    

 

 (II)  Approximate the change in the function  f  as the independent variables changes from   P   

        to  Q . 

)04.2,02.1(Q,)2,1(P,x4yx2x)y,x(f)1( 2 

 )03.9,78.7(Q,)9,8(P,yx)y,x(f)2( 2/13/1

 )02.2,01.1(Q,)2,1(P,
yx

yx
)y,x(f)3(




 )5.8,1.4,97.0(Q,)9,4,1(Pzyx)z,y,x(f)4( 

 )96.2,05.2,8.0(Q,)3,2,1(Pzxzyyx)z,y,x(f)5(   

 (III)  Use differentials to approximate the given problems 

(1) Estimate the value of  
















180

29
cos

180

89
sin 2 

. 

(2) Estimate the value of  








180

43
tan2 

. 

(3) Estimate the value of 3 3.26/2.101  

   (4) Estimate the value of 3 8.71.81 x  

   (5) The dimensions of a rectangular parallelepiped are measured as 6, 2 and 5 inches    

         with possible error in measurement of 1/2%. Approximate the maximum error in  

          computing the surface area.  

    (6) Calculate the approximate value of 22 )03.4/()02.9(  

     (7) Calculate the approximate value of  (3.02)
2
 x (0.97)

2
 

     (8) Calculate the approximate value of  (4.02)
2
 / (3.97)

2
 

      (9) Calculate the approximate value of 22 )93.2()05.4(   
 

 

§§§§§§§§§§§§ 

 

 



Chapter 3                                                                                                           Functions Of  

                                                                                                                         Several Variables 

   

 89 

 

6- Chain Rules and Implicit Differentiation 

         6.1  Chain Rules 

 

In the first course of “Calculus” we considered the differentiable functions )x(fy   

and  )t(gx  , then the chain rule is, 
dt

dx

dx

dy

dt

dy
  

 

The analogous for functions of two or three variables is given in the following theorems 

 

Theorem : 3    ( Rule 1 ) 

 

 

 

 

 

Similar statements hold for functions of three or more variables, in fact if, 

)s,...,z,y,x(fw   is a differentiable function of any number of variables, and each 

variable, is differentiable function of one variable t , then  

dt

ds

s

w
...

dt

dy

y

w

dt

dx

x

w

dt

dw














 . 

 

Example : 22 

Find  

dt

df
  for the following functions    

(i)    yx22 eyx)y,x(f  ,      3t4y,tcosx  . 

(ii)    yxtan)y,x(f 1 ,               t/1y,ttanx  . 

(iii)    )z,y,x(f = sin (xyz),     x = 1/t,      y = ln t,    z = t. 

Solution 

(i) 
dt

dy

y

f

dt

dx

x

f

dt

df









                        

                    )t12()ex()tsin()e2yx2( 2yx22yx2             

                     
33 t4tcos2222t4tcos23 et12tcost12etsin2tsintcost8    

(ii) 
dt

dy

y

f

dt

dx

x

f

dt

df









  = 

2)(1

y

xy
tsec2
 + 

2)(1

x

xy







 
2t

1
    

                   =   
ttant

ttantsect
22

2




. 

If  )y,x(fz    and   )t(yy),t(xx    are all differentiable functions, 

then      
dt

dy

y

z

dt

dx

x

z

dt

dz









 . 
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(iii)      
dt

dz

z

f

dt

dy

y

f

dt

dx

x

f

dt

df














    

                    )xyzcos(xy
t

1
)xyzcos(xz

t

1
)xyzcos(yz

2















 
   

                   = )xyzcos( 










xy

t

xz

t

yz
2

 = )t(lncos
t

1
 

§§§§§§§§§§§§ 
 

Theorem : 4    ( Rule 2) 

 

 

 

 

 

 

Once again, similar statements hold for functions of three or more variables, in fact if, 

)t,...,z,y,x(fw   is a differentiable function of any number of variables, and each 

variable, in turn, is differentiable function of any number of variables ).,..,,( svuxx  ,  

),.,..,,( svuyy   . . ., ).,..,,( svutt  , then for example,  

u

t

t

w
...

u

z

z

w

u

y

y

w

u

x

x

w

du

dw



































 . 

This is the most general statement of the chain rule. 

 

Example : 23 

 (i)     z = x
2
 y

3
 + x sin y,        x = u

2
 ,               y = uv 

 (ii)    z = e
x
 ln y ,                   x = u

2
 – 2  ,      y = v

2
 – 2u 

Solution     

(i)     
u

z




 =  

x

 z
 

u

x




  +  

y

z




 

u

y




  

               =  (2xy
3
 + sin y) (2u) + (3x

2
y

2
 + x cos y) (v)  

               uvvuuvuvu cossin27 236         

         


z
 =  

x

z




 



 x
  +  

y

z




 



 y
  

                 = (2xy
3
 + sin y) (0) + (3x

2
y

2
 + x cos y) (u) 

      uvcosuvu3 327   

If  )y,x(fz   and  )v,u(yy),v,u(xx    are all differentiable functions, 

then :  

u

y

y

z

u

x

x

z

u

z






















,           and,          

v

y

y

z

v

x

x

z

v

z






















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 (ii) 
u

z




 = 

x

 z

u

x




+

y

z





u

y




 = e

x
 ln y (2u) + 

y

e x

(–2)                                                          

                   











 

uv
uvue vu

2

2
)2ln(2

2

222

 

             
v

z




=

x

 z



 x
+

y

z







 y
 = e

x
 ln y (– 2 ) + 

y

e x

(2u)                                                  

                   











 

uv

u
uve vu

2

2
)2ln(2

2

222

  

§§§§§§§§§§§§ 
 

Example : 24 

 If  32 tvsrw    and   222 zyxr  ,  ,zyxs    yexv    and 

2zyt  .   Find   
z

w




  . 

Solution 

z

t

t

w

z

v

v

w

z

s

s

w

z

r

r

w

z

w








































 

         )zy2(t3)0(s)yx(v)z2()r2( 2  

         53y2222 zy6eyx)zyx(z4  . 

§§§§§§§§§§§§ 
 

Example : 25 

If  )yx( 22
ew   ,      sinry,cosrx .  Show that: 

2r2

22

2
e4

w

r

w

r

1


























. 

Solution  

222

2sin2cos2 22 rrr ererer
r

w





 ,    

              0cossin2cossin2
22









rr erer
w

 , 

                         
22

2

2
4

1 re
r

w

r













,              0

2
















w
 

Then :     L.H.S.  =  
22

22

2
4

1 re
w

r

w

r




























 =  R.H.S. 

§§§§§§§§§§§§ 
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Example : 26 

For a differentiable function )y,x(f  with  cosrx   and   sinrx  , where  

yxf and   xyf  are continuous, show that : 

  sinfcosff yxr  

  2
yyxy

2
xxrr sinfsincosfcosff  

Solution 

First, notice that,  



cos

r

x
       and      




sin

r

y
.  























 sinfcosf

r

y

y

f

r

x

x

f

r

f
f yxr   ,   Now,  

 








 sinfcosf

rr

f
f yx

r
rr  

           


















































 sin

r

y
f

yr

x
f

x
cos

r

y
f

yr

x
f

x
yyxx

 

        sinsinfcosfcossinfcosf yyyxxyxx  

       2
yyxy

2
xx sinfsincosfcosf  

§§§§§§§§§§§§ 
 

 

      6-2   I m p l i c i t   D i f f e r e n t i a t i o n 

Partial derivatives can be used to find derivatives of functions that are determined 

implicitly. Suppose, an equation F(x, y) = 0 determines a differentiable function f such that 

)x(fy   that is, ))x(f,x(F = 0 for every x in the domain of  f . Let us introduce the following 

composite function F:  )y,u(Fw    where   u = x    and     )(xfy   

Using the first rule of chain rules and the fact that u and y are functions of one variable x 

yields,   
dx

dy

y

w

dx

du

u

w

dx

dw









  

Since   w = ))x(f,x(F  = 0 for every  x , it follows that .0dx/dw   Moreover, since u 

= x and y )x(fy  ,    1
dx

du
 ,    and     ).x('f

dx

dy
  

Substituting in the preceding chain rule formula for dw/ dx, we obtain, 

)x('f
y

w
)1(

u

w
0









  

If 0y/w  , then (since u = x),   

 
)y,x(F

)y,x(F

y/w

x/w

y/w

u/w

dx

dy
)x('f

y

x








                   
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We may summarize the preceding discussion as follows. 

 

Theorem : 5    

 

 

 

 

 

 

Example : 27 

    Find dx/dy  if  )x(fy   is determined implicitly by, 

(i) 01543 34  xxyy     ,    (ii) 223 53 yxxyy      

Solution 

(i)  1x5x4y3y)y,x(F 34   

  

3y4

5x12

3y4

5x12

)y,x(F

)y,x(F

dx

dy
3

2

3

2

y

x









  

 

(ii)     223 yx5xy3y)y,x(F   

    

yx10x3y3

yx10y3

yx10x3y3

yx10y3

)y,x(F

)y,x(F

dx

dy
22

2

22

2

y

x









  

§§§§§§§§§§§§ 
 

In analogy with the single-variable case, we say that the function ),( yxfz   of two 

variables x and y is determined implicitly as follows. 

*  Define the composite function 0))y,x(f,y,x(F   as, 

  )z,v,u(Fw  where ,yv,xu    )y,x(fz   

**  Apply the second rule of chain rules, 

            
x

z

z

w

x

v

v

w

x

u

u

w

x

w































 

Which may be written as,  
x

z

z

w

y

w

x

w


















 )0()1(0  

and if  0/  zw , then  , 
)z,y,x(F

)z,y,x(F

z/w

x/w

x

z

z

x








 

 

The formula for yw  / may be obtained in similar fashion.  

If an equation 0)y,x(F   determines, implicitly. a differentiable 

function  f  of one variable x  such that   y = f (x), then, 
)y,x(F

)y,x(F

dx

dy

y

x  
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Theorem : 6   

 

 

 

 

 

 

 

 

 

Example : 28 

      Find x/z   and y/z   if  )y,x(fz   is determined implicitly by, 

05zy4zyxzx 3222      

Solution 

5zy4zyxzx)z,y,x(F 3222   

y4z3zx2

yzx2

)z,y,x(F

)z,y,x(F

x

z
22

22

z

x









 

y4z3zx2

z4yx2

)z,y,x(F

)z,y,x(F

y

z
22

z

y









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If an equation 0),,( zyxF  determines, implicitly. a differentiable 

function f  of two variable x and y such that ),( yxfz   then, 

)z,y,x(F

)z,y,x(F

y

z
,

)z,y,x(F

)z,y,x(F

x

z

z

y

z

x 








 



Chapter 3                                                                                                           Functions Of  

                                                                                                                         Several Variables 

   

 95 

 

E x e r c i s e   ( 3– 5) 

 

 (I)  Find  
dt

dw
 for the following functions, 

222 ty,1t3x;y3yxw)1(   

3 22 ty,tx;)yx(lnw)2(   

2x t3y,tlnx;yew)3(   

t3y,t/1x;yxsinxcos3w)4(   

t/1y,ttanx;yxtanw)5( 1    

t2z,ty,tlnx;zyx3y1w)6( 22   

yx22 eyxw)7(                  3t4y,tcosx   

tlnz,ty,tx;ezcosyysinxw)8( 2z    

(9)  w = sin (xyz) ,                           x = 1/t ,   y = ln t , z = t 

t/1y,tsinx;yxsinw)10( 1    

tz,tsiny,tcosx;zyxw)11( 222   

 

 (II)  Find 
u

z




  and   

v

z




  for the following functions, 

uvy,ux;ysinxyxz)1( 232   

v3y,u2x;yyxxz)2( 33   

u2vy,v2ux;ylnez)3( 22x   

 

(III)  Find 
r

w




 , 

s

w




 ,  and   

t

w




    for the following functions 

tsrz,rsty,srx;zyxzyxw)1( 22232   

tsrz,try,srx;)zyxln(ew)2( 2zyx   

(3) 222 zyxw    tx  , ,sy    rz     
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(IV) For a differentiable function )y,x(f  with  cosrx   and   sinrx  and where    

         yxf and   xyf  are continuous, show that : 

(1)   cosrfsinrff yx  





sinrfcosrf

cosrfsincosrf2sinrff)2(

yx

22
yy

2
xy

22
xx

 

 

 

(V) Find  
dx

dy
  if  )x(fy  is determined implicitly by the  following equations 

(1)  x
2
 + 6 xy = 5y

2
 – 3                           (2)  xsinyxy2x 323        

(3) e
x
 = tan y                                          (4)  xsinhexln xy3   

(5) x sin y – y cos x = 0                         (6)  yxeyex xy 2  

 

(VI) Find  
x

z




  and  

y

z




  if )y,x(fz   is determined implicitly by the  following equations 

(1)  4z
4
 = 2 x y

2
 – 3 z

2
y                        (2)  1ez3ey2ex xyxzyz   

(3) x e
yz 

+ y e
xz 

= z                               (4)  4xyzcosyzxy 22   

 

(VII) (a)  Show that  )y4yx4xln(ez 22)y2x(  
  ,  satisfies the equation:   

x

z
2

y

z









 

(b) Show that any differential function  z = f(x,2y) will satisfy the previous equation.  
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7-    D i r e c t i o n a l   D e r i  v a t i v e s    A n d    T h e   G r a d i e n t 

      7-1 Directional   Derivative 

The derivative of a function )y,x(f  at a point )y,x(P 00 in the direction of a unit 

vector juiuu 21   is defined by, 

t

)y,x(f)uty,utx(f
lim)y,x(fD 002010

0t
00u





, 

provided the limit exist. 

This derivative is called the directional derivative of the function )y,x(f  at a point 

)y,x(P 00 in the direction a unit vector juiuu 21  . 

Now we may consider the partial derivative x/f   as the directional derivative in the 

direction of x-axis ( j0i1u  ) while the partial derivative y/f   as the directional derivative 

in the direction of y-axis ( j1i0u  ). 

 

The following theorem provides a formula for finding directional derivatives. 
 

Theorem : 7   

 

 

 

 

 

Example : 29 

Find the derivative of the function yxyxyxf 334),(   at the point )1,2( P in the 

direction of the vector jia 2 . 

Solution 

The vector a  is not a unit vector. The unit vector in the direction of the vector a  is  

a/au     .    j
5

2
i

5

1

41

j2i
u 




 . 

yx3yx4)y,x(f 233
x  ,           44)1,2(fx   

324
y xyx3)y,x(f  ,                56)1,2(fy  . 

5

68

5

2
)56(

5

1
)44()1,2(fDu  . 

§§§§§§§§§§§§ 

If  f is differentiable function of two variables and juiuu 21   is 

a unit vector, then  :   2y1xu u)y,x(fu)y,x(f)y,x(fD  . 
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Example : 30 

Find the derivative of the function yxx)y,x(f 2   at the point )2,1(P in the 

direction of the vector j)2/1(i)2/1(a  . 

Solution 

   The vector a  is a unit vector.  

yx2)y,x(fx   ,     4)2,1(fx   

x)y,x(fy    ,      1)2,1(fy  . 

2

5

2

1
)1(

2

1
)4(),1(fDu   

 

For the function of three variables )z,y,x(f , the directional derivative of f at a point 

)z,y,x(P in the direction of a unit vector kujuiuu 321  , 

 

 

 

 

 

Example : 31 

Find the derivative of the function zyzx)z,y,x(f 332   at the point )1,1,1(P in 

the direction of the vector k2j2ia  . 

Solution 

The vector a  is not a unit vector. The unit vector in the direction of the vector a  is 

aau /       k
3

2
j

3

2
i

3

1

441

k2j2i
u 




 . 

3
x zx2)z,y,x(f    ,   2)1,1,1(fx   

zyzyxf y

23),,(    ,    3)1,1,1(fy  . 

322
z yzx3)z,y,x(f     ,    4)1,1,1(fz   

3333333.5
3

16

3

2
)4(

3

2
)3(

3

1
)2()1,1,1(fDu   

§§§§§§§§§§§§ 

 

 

 
 

3z2y1xu u)z,y,x(fu)z,y,x(fu)z,y,x(f)z,y,x(fD   
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      7-2   The Gradient 

We may express a directional derivative as a dot product of two vectors, as follows: 

   juiuj)y,x(fi)y,x(f)y,x(fD 21yxu   

or                     21yxu u,u)y,x(f),y,x(f)y,x(fD   

The vector in the first bracket, whose components are the first partial derivatives of ),( yxf , is 

very important. It is denoted by ),( yxf  and is given the following special name. 

Definition  :  6 
 

 

 

 

 

Now the directional derivative may be written as a dot product of the gradient vector 

)y,x(f  and direction unit vector  21, uuu   as, 

 

 

 

Example : 32 

Find the directional derivative of   zxyx)z,y,x(f 23   at )0,1,1(P in the direction 

of    k6j3i2a  . 

Solution 

       The unit vector in the direction of a  is, k
7

6
j

7

3
i

7

2

3694

k6j3i2
u 




  

       The gradient of f  at P  is,     1,yx2,yx3)z,y,x(f 22   

                 1,2,2)0,1,1(f   

The directional derivative of  f  at P in the direction of a  is therefore, 

                   
7

4

7

6
,

7

3
,

7

2
1,2,2)0,1,1(fDu 







 
  

§§§§§§§§§§§§ 

 

 

 

Let f be a function of three variables. The gradient of )z,y,x(f  is the vector 

function given by,    k)z,y,x(fj)z,y,x(fi)z,y,x(f)z,y,x(f zyx   

 

u)z,y,x(f)z,y,x(fDu   
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E x e r c i s e   ( 3– 6) 

 (I) Find the directional derivatives at point p in the indicated directions. 

    j
2

1
i

2

1
a),1,1(P,yx)y,x(f)1( 22   

    j3i4a),5,5(P,y3yx2)y,x(f)2( 2   

    j
2

1
i

2

3
a),3,1(P,e)y,x(f)3( xy   

 j3i2a),4,4(P,x/ytan)y,x(f)4( 1    

 j3ia),4/,1(P,ytanxy)y,x(f)5(   

 j4ia),1,5(P,ylnx)y,x(f)6( 2   

 k5j2ia),3,1,2(P,zxy)z,y,x(f)7( 2   

 k3j2ia),4,1,2(P,zyx)z,y,x(f)8( 23   

 ),1,0,3(P,xyz40)z,y,x(f)9(    from P  to Q(1, 1, 1) 

 ),1,3,2(P,zyx)z,y,x(f)10( 222   from P  to  Q(0, -5, 4) 
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8-  A p p l i c a t i o n s   O n   D e r i v a t i v e s 

If  k)t(kj)t(hi)t(gr    is a smooth curve on the level surface  c)z,y,x(f   of 

a differentiable function f, then c))t(k),t(h),t(g(f  . Differentiating both sides of this 

equation with respect to t  leads to, 

  )c(
dt

d
))t(k),t(h),t(g(f

dt

d
  

0
dt

dk

z

f

dt

dh

y

f

dt

dg

x

f















 

0k
dt

dk
j

dt

dh
i

dt

dg
k

z

f
j

y

f
i

x

f

dt/drf



































    

 

At every point along the curve, f  is orthogonal to the curve's tangent vectors. 

      

      8-1 Tangent  Plane   And   Normal  Vector 

Now let us restrict our attention to the curves that pass through P . All the tangent 

vectors at P are orthogonal to f  at P, so the curves' tangent lines all lie in the plane through 

P normal to f . We call this plane the tangent plane of the surface at P. The line through P 

perpendicular to the plane is the surface's normal line at P. 

 

Definition  :  7 
 

 

 

 

 

 

Thus, the equation of the tangent plane  is ,     0)zz,yy,xx()z,y,x(f 000000   

Or 

           

 

 

and the equation of the normal vector, 

 

 

 

The tangent plane at the point ),,( 000 zyxP on the level surface 

czyxf ),,(  is the plane through P normal to 
p

f . 

The normal line of the surface at P  is the line through P parallel to 
p

f . 

 

0)zz()z,y,x(f)yy()z,y,x(f)xx()z,y,x(f 0000z0000y0000x   

)zz(

)z,y,x(f

)yy(

)z,y,x(f

)xx(

)z,y,x(f

0

000z

0

000y

0

000x








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Example : 33 

Find the equations of tangent plane and normal line of the surface  09zyx 22   

at the point )4,2,1(P .  

Solution     

9zyx)z,y,x(f 22   

  1,y2,x2)z,y,x(f   ,     1,4,2)4,2,1( f  

Then, the equation of the tangent plane :  

    0)zz()z,y,x(f)yy()z,y,x(f)xx()z,y,x(f 0000z0000x0000x      

i.e.       0)4z(1)2y(4)1x(2  ,  or    14zy4x2   

and the equation of the normal line,  

 
)zz(

)z,y,x(f

)yy(

)z,y,x(f

)xx(

)z,y,x(f

0

000z

0

000y

0

000x








 

i.e.       
4z

1

2y

4

1x

2








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Example : 34 

      Find the equations of tangent plane and normal line to the ellipsoid  12zy3x
4

3 222   

at the point )6,1,2(P .  

Solution     

),,( zyxf 123
4

3 222  zyx  









 zyxzyxf 2,6,

2

3
),,( ,                        62,6,3)6,1,2( f  

Then, the equation of the tangent plane , 

   0)6(62)1(6)2(3  zyx ,    or      246263  zyx  

and the equation of the normal line,  
6z

62

1y

6

2x

3








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8-2   Extrema  Values  And  Saddle  points 

To find the local extreme values of a function of a single variable, we look for points 

where the graph has a horizontal tangent line. At such points we then look for local maxima, 

local minima, and points of inflection. For a function  )y,x(f of two variables, we look for 

points where the surface )y,x(fz  ) has a horizontal tangent plane. At such points we then 

look for local maxima, local minima, and saddle points. 

 

Definition  :  8 
 

 

 

 

 

 

 

 

 

 

 

 

 

As with functions of a single variable, the key to identifying the local extrema is a first 

derivative test. 

 

Theorem : 8  

 

 

 

 

 

 

Definition  :  9 

 

 

 

 

Let )y,x(f  be defined on a region R containing the point )b,a( . Then 

       1. )b,a(f  is a local maximum value of  f  if )y,x(f)b,a(f   for all  

            domain points )y,x( in an open disk centered at )b,a( . 

 

       2. )b,a(f  is a local minimum value of  f  if )y,x(f)b,a(f   for all  

          domain points )y,x( in an open disk centered at )b,a( . 

        

        3. )b,a(f  is a   saddle point   value of  f  if there are domain points  

            )y,x( where )b,a(f)y,x(f   and domain points )y,x( where   

            )b,a(f)y,x(f   in every open disk centered at )b,a( . 

 

         If )y,x(f has a local maximum, local minimum or saddle point value at 

an interior point )b,a( of its domain and if the first partial derivatives exist there, 

then 0)b,a(fx   and 0)b,a(fy   

An interior point of the domain of a function )y,x(f  where both xf and yf are 

zero or where one or both of xf and yf do not exist is a critical point of f. 
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Thus, the only points where a function )y,x(f can assume extreme or saddle points values 

are critical points and boundary points.  

 The fact that xf  = yf  = 0, at an interior point )b,a( of  R does not tell us enough to be 

sure f  has a local extreme value there. However, if f and its first and second partial 

derivatives are continuous on R, we may be able to learn the rest from the following theorem. 

Define the function: 2
xyyyxx fff)y,x(F  which is called the discriminate of f. It is 

sometimes easier to remember the function )y,x(F  determinant form, 

yyxy

yxxx2
xyyyxx ff

ff
fff)y,x(F   

Theorem : 9  

 

 

 

 

 

 

 

 

 

Example : 35 

Find the local extreme values of yx)y,x(f  . 

Solution.  

The function is defined and differentiable for all x and y and its domain has no boundary 

points. The function therefore has extreme values only at the points where xf  and  yf are 

simultaneously zero. This leads to,    0yfx    and   0xfy   

Thus, the origin is the only point where f might have an extreme value. To see what  
 

happens there, we calculate 

1f,0f,0f xyyyxx   

01fff)y,x(F 2
xyyyxx   

Therefore the function has a saddle point at (0, 0),  has no local extreme values. 
 

 

§§§§§§§§§§§§ 
 

Suppose )y,x(f  and its first and second partial derivatives are continuous 

throughout a disk centered at )b,a( ) and that )b,a(fx  = )b,a(fy  = 0.   Then 

i)  f  has a local maximum at )b,a(  if :   0fxx   and 0)y,x(F   at  )b,a(  

ii) f  has a local minimum at )b,a(   if :   0fxx   and 0),( yxF  at  )b,a(  

iii) f  has a saddle point at )b,a(  if : 0)y,x(F   at  )b,a(  

iv) The test is failed if :    0)y,x(F   at  )b,a(  
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Example : 36 

      Find the local extreme values of  

4y2x2yxyx)y,x(f 22  . 

Solution  

Since f  is differentiable everywhere, it can assume extreme values only where, 

02x2yfx    and   02y2xfy   

or         2yx   

Thus, the point )2,2(   is the only point where f may take on an extreme value.  

1f,2f,2f xyyyxx   

03fff)y,x(F 2
xyyyxx   

Then,   02fxx     and    03)y,x(F           

Therefore the function has a local maximum at )2,2(  . 

§§§§§§§§§§§§ 
 

Example : 37 

Find the local extreme values of:  y4yyx4x)y,x(f 32   

Solution  

Since f is differentiable everywhere, and, 

0y4x2fx    and   04y3x4f 2
y  . 

Solving this system, we find that f  has the two critical points )2,4(  and  )3/2,3/4( . The 

second partial derivatives are, 

       2)y,x(fxx  ,    y6)y,x(fyy   ,   4)y,x(fxy   

       16y12fff)y,x(F 2
xyyyxx   

 

)b,a(  )b,a(F  )b,a(fxx  Conclusion 

)2,4(  08   02   0)2,4(f   is a local min. 

)3/2,3/4(

 

08      - 
19.1)

3

2
,

3

4
(f  is a saddle point 

 

 

§§§§§§§§§§§§ 
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Example : 38 

Find the local extreme values of: 20y12x3yx)y,x(f 33   

Solution  

Since f is differentiable everywhere, and, 

03x3f 2
x    and   012y3f 2

y  . 

i.e.       1x    and      2y   

We find that f  has the four critical points,  

)2,1(,)2,1(,)2,1(   and  )2,1(  .  

The second partial derivatives are, 

        x6)y,x(fxx  ,    y6)y,x(fyy   ,   0)y,x(fxy   

        yx36fff)y,x(F 2
xyyyxx   

 

)b,a(  )b,a(F  ),( baf xx  Conclusion 

)2,1(  072   06   2)2,1(f   is a local min. 

)2,1(  072   - 6)2,1(f   is a saddle point 

)2,1(   072   - 34)2,1(f   is a saddle point 

)2,1(   072   06   38)2,1(f    is a local max. 

 

§§§§§§§§§§§§ 
 

8-3   Constraints And   Lagrange  Multipliers 

 We sometimes need to find the extreme values of a function whose domain is constrained 

to lie within some particular subset of the plane 

Here, we explore a powerful method for finding extreme values of constrained functions: 

the method of Lagrange multipliers.  

 

Theorem : 10    ( Lagrange’s Theorem ) 

 

 

 

 

 

 

Suppose f and g are functions of two variables that have continuous first 

partial derivatives, and that 0g  throughout a region of the xy-plane. If f has an 

extremum )b,a(f  subject to the constraint 0),( yxg , then there is a real number 

  such that,   )b,a(g)b,a(f   
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The points at which a function f of two variables has local extrema subject to the 

constrain 0)y,x(g   are included among the point )y,x( determined by the first two 

coordinates of the solution ),y,x(   of the system of equations, 

)y,x(g)y,x(f xx  ,  )y,x(g)y,x(f yy  ,  0)y,x(g  . 

 

The Lagrange’s Theorem (3.8.3) may be extended to the function of three variables x, 

y, z. In this case, we solve the system, 

 





















0)z,y,x(g

)z,y,x(g)z,y,x(f

)z,y,x(g)z,y,x(f

)z,y,x(g)z,y,x(f

zz

yy

xx

 

 

Some applications may involve more than one constraint. In particular, consider the problem 

of finding the extrema of )z,y,x(f  subject to the two constraints, 

 0)z,y,x(g    and    0)z,y,x(h  . 

Then the following condition must be satisfied for some real numbers  and   such that, 

)z,y,x(h)z,y,x(g)z,y,x(f   

And we solve the system, 

 

























0)z,y,x(h

0)z,y,x(g

)z,y,x(h)z,y,x(g)z,y,x(f

)z,y,x(h)z,y,x(g)z,y,x(f

)z,y,x(h)z,y,x(g)z,y,x(f

zzz

yyy

xxx

 

 

Example : 39 

Find the maximum and minimum values of the function: y4x3)y,x(f   on the 

circle  1yx 22   

 Solution  

Let   y4x3)y,x(f           and          1yx)y,x(g 22   

The system, 

)y,x(g)y,x(f xx  ,      )y,x(g)y,x(f yy  ,        0)y,x(g  . 

Leads to the equations, 

)3(1yx)2(,y24)1(,x23 22   

From (1),(2),    






2

y,
2

3
x . Substituting into (3),  
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We obtain 
2

5
  and so,  

5

4
y,

5

3
x   

)y,x(   5/4,5/3   5/4,5/3   

)y,x(f  5 -5 

Then   5
5

4
,

5

3
f 








   is a local maximum. 

  and   5
5

4
,

5

3
f 







 
     is a local minimum. 

 

§§§§§§§§§§§§ 
 

 

Example : 40 

Find the extrema of  yx)y,x(f     if  )y,x( is restricted to the ellipse  4yx4 22  . 

Solution  

Let   yx)y,x(f        and      4yx4)y,x(g 22   

The system, 

)y,x(g)y,x(f xx  ,  )y,x(g)y,x(f yy  ,  0)y,x(g  . 

Leads to the equations, 

)3(4yx4)2(,y2x)1(,x8y 22   

From (1),(2),    2x16x     or    0)161(x 2   

Therefore either  0x   or    4/1  

If  0x , then from (3),   2y  

If   4/1 ,  then from (1),  xxxy 2)4/1(88   .   

Substituting into (3),   4x8 2     or   
2

1
x   and    2y   

Now :  

0)2,0(f  ,   12,
2

1
f 











,    12,

2

1
f 







 
 . 

Thus, yx)y,x(f   takes on a maximum value of 1 at either 







2,

2

1
 or   











2,

2

1
     

    and a minimum value of  -1 at  







 2,

2

1
  or  







 
2,

2

1
 

§§§§§§§§§§§§ 
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Example : 41 

If 222 z5yx4)z,y,x(f  . Find the point on the plane 12z4y3x2   at 

which  )z,y,x(f  has its least value 

Solution  

Let   222 z5yx4)z,y,x(f        and      12z4y3x2)y,x(g   

)z10,y2,x8(f  ,              )4,3,2(g   

This leads to the equations, 

)2(,3y2)1(,2x8  )4(12z4y3x2)3(,4z10   

From (1),(2), (3),      .z
2

5
y

3

2
x4          or     x

5

8
z,x6y   

Substituting into (4) ,  12x
5

32
x18x2   

Therefore ,   
11

8
z,

11

30
y,

11

5
x   

Since there is only one critical point, it follows that the minimum value occurs at that point, 

(5/11,30/11,8/11). 

§§§§§§§§§§§§ 
 

Example : 42 

Find the shortest distance between the origin and the surface: 1yxz  .    

Solution 

Consider the point )z,y,x( on the surface 1yxz  . The distance between the point 

)z,y,x(  and the origin is, 222 zyxd  .  

Now  ,  we can restate the problem as, find the minimum value of the function  

222 zyx)z,y,x(f  on the surface 1yxz  . 

222 zyx)z,y,x(f    and   1yxz)z,y,x(g   

)z2,y2,x2(f  ,      )1,x,y(g   

This leads to the equations, 

)2(xy2)1(yx2    )3(,z2     )4(1yxz   

From (1),(2),  0)2()yx(  ,      yx    or    2  

Then from (3), (4),  1z    and    0yx   

Thus the shortest distance,   1zyxd 222  . 

§§§§§§§§§§§§ 
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Example : 43 

The plane 1zyx   cuts the cylinder 1yx 22   in an ellipse. Find the points 

on the ellipse that lie closest to and farthest from the origin. 

Solution 

Consider the point ),,( zyx on the ellipse (the intersection of the above two surfaces). 

The distance between the point ),,( zyx  and the origin is,  222 zyxd   

We find the extreme values of :  222 zyx)z,y,x(f   subject to the constraints:  

  1yx)z,y,x(g 22
1  ,          1zyx)z,y,x(g2     

The gradient equation then gives 

           )z,y,x(g)z,y,x(g)z,y,x(f 21   

Then,  )1,1,1()0,y2,x2()z2,y2,x2(   

This leads to the equations, 

)1(x2x2      ,  )2(y2y2       ,    )3(z2   

      )4(,01yx 22     ,        )5(01zyx   

From (3) in (1), (2),    )6(,z2y2y2,z2x2x2   

Equations (6) are satisfied simultaneously if either, 

1  and  0z      or     1  and  )1/(zyx   

If  z = 0, then solving equations (4) and (5) simultaneously to find the corresponding points on 

the ellipse gives the two points )0,0,1( and )0,1,0( .  

If yx  , then (4) and (5) give:  ,01xx 22  and  01zxx   

i.e.       
2

1
yx             and      21z  . 

Then we have four critical points, 

,)0,0,1(P1  )0,1,0(2 P , 







 21,

2

1
,

2

1
P3 , 











 21,

2

1
,

2

1
P4  

1)P(d 1  ,     1)P(d 2  ,     0824.1)P(d 3  ,       61313.2)P(d 4   

Now, it is clear that the closest points to the origin are 1P , 2P  and the farthest point from the 

origin is 4P  

§§§§§§§§§§§§ 
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E x e r c i s e   ( 3– 7) 

 (I) Find the equations of the tangent plane and the normal line to the given level surfaces at  

      the indicated points. 

)2,1,1(Pat4zyx)1( 222   , )3,1,1(Pat7zyyx2x)2( 222   

)1,1,1(Pat1zyx)3( 222    , )1,1,1(Pat0zyyxx)4( 22   

)2,1,1(Pat0zyx)5( 222   , )0,1,0(Pat1zyx)6(   

)0,4,2(Patxy)7( 2  

 

(II) Find a vector normal to the given level curves at the indicated points. 

)1,1(at4yx3)1( 22   , )3,2(at1yx4)2( 2   

)4,2(at0yx)3( 2   
 

(III) Find all the local maxima, local minima and the saddle points of the following functions 

6y2yyx3x)y,x(f)1( 22      , 5y2x3yxx)y,x(f)2( 2   

y9x32yx)y,x(f)3( 34    , 6yx2yx)y,x(f)4( 33   

ycosxcos)y,x(f)5(     , ysinxsin)y,x(f)6(   

ysine)y,x(f)7( x    , ycose)y,x(f)8( x2  
 

(IV) Use Lagrange multipliers to find the local extrema for the following functions under the 

stated constraints 

   1yx,x4yx4y)y,x(f)1( 2222    

   1y3x2,yyyxx2)y,x(f)2( 22   

  22 yx4z,z3y2x)z,y,x(f)3(    

   25zyx,zyx)z,y,x(f)4( 222   

   4z2y4x,zyx)z,y,x(f)5( 222   

   1zyx,zyx)z,y,x(f)6( 222   

   4yx,1zyx,yxz)z,y,x(f)7( 2222   

   1zy,1yx,zyx)z,y,x(f)8( 22222   
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(V) Find the point on the sphere:  x
2
 + y

2
 + z

2
 = 9   that is close to the point:  (2, 3, 4). 

 

(VI) Find the point on the space where the sum of whose coordinates is 64 and whose distance  

       from the origin is minimum. 

 

(VII) À rectangular  parallelepiped, with sides parallel to the coordinates axis and inscribes in  

         the ellipsoid:  16 x
2
 + 4y

2
 + 9z

2
 – 144=0  ,  What dimension yield the largest volume. 

 

§§§§§§§§§§§§ 
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CHAPTER 4 

 

 

 

 
 

Series, in particular power series, play an important rule in mathematics. To introduce 

the series, we begin with definition of a sequence and related concepts. 

 

1-  I n f i n i t e   S e q u e n c e s 

 

Definition :  1 

 

 

 

 
 

 

Thus a sequence is a set of numbers ,...,,, 321 uuu  in a definite order of arrangement 

and formed according to a definite rule. Each number in the sequence is called a term, the 

term nu  is called the nth term. The sequence is called finite or infinite according as there is or 

is not a finite number of terms. In this section we shall consider the infinite sequences only. 

An infinite sequence or, briefly, a sequence is denoted by }{ nu . In this chapter, the range of 

the sequence will be a set of real numbers. 

 

The graph of the sequence may be represented as a set of points ),( nun in the xy-plane. 

 

 

Example   : 1  

  Represent the following sequences, 

 3)(
1

)(
)1(

)(
1

iii
n

n
ii

n
i

n







 







  

 

   n
1n

)1.0(2)vi(1n)v(
n

)1n()1(
)iv( 











  

 

I N F I N I T E   S E R I E S 

      An infinite sequence (or sequence) of numbers is a function whose 

domain is the set of integers greater than or equal to some integer. 
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Solution  

....,
5

1
,

4

1
,

3

1
,

2

1
,1

n

)1(
)i(

1n












  

    

....,
5

4
,

4

3
,

3

2
,

2

1
,0

n

1n
)ii( 







 

 

  ....,3,3,3,3,33)iii(     

...,
5

4
,

4

3
,

3

2
,

2

1
,0

n

)1n()1(
)iv(

1n












  

 

  ....,4,3,2,1,01n)v(     

  ....,00001.2,0001.2,001.2,01.2,1.2)1.0(2)(  nvi   

 

The sequences (i)-(vi) are illustrated in Fig. (4.1), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4.1) 

 

§§§§§§§§§§§§ 

In the above examples, we see that as n increases, some of these sequences approaches 

certain values (i, ii, iii, vi) and the others are not (iv, v). This leads us to the following 

definition. 
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Definition :  2 

 

 

 

 
 

 

 

 

N O T E 

In example (1) above, sequence (i), (ii), (iii), (vi) are converge to 1, 0, 3, 2  

respectively while the sequences in (iv) and (v) are diverge. 

The next theorem is important because' it allows us to use results from limit of 

function of one variable to investigate convergence or divergence of sequences. 

 

Theorem  :  1 

 

 

 

 
 

 

 

 

 

Example  :2  

Determine whether the sequence 









n

1
1   converges or diverges. 

Solution 

Let  
x

1
1)x(f    for  1x  , then,   .1

x

1
1lim)x(flim

xx












 

Hence,  .1
n

1
1lim

n












 Thus, the sequence 










n

1
1   converges to 1. 

§§§§§§§§§§§§ 

 

 

      A sequence   nu  has the limit L or converges to L denoted by either 

Lulim n
n




  or  Lun   as  n ,  if for every 0  there exist a 

positive number N such that  Lan ,  whenever  .Nn   

If such a number L does not exist, the sequence has no limit or diverges. 

 

      Let  nu  be a sequence. Let  ,u)n(f n  and suppose that 

)x(f exists for every real number  1x  . 

     (i)  If   L)x(flim
x




, then  L)n(flim
n




 and   nu converges to L. 

      (ii)  If   


)x(flim
x

, then  


)n(flim
n

 and   nu  diverges. 
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Example  :3  

Determine whether the following sequences converges or diverges 

   n21n
3

e/n5)c()1()b(4
3

n
)a( 













  

Solution 

(a)  Let 4
3

x
)x(f

3

  for 1x  , then, 
















4

3

x
lim)x(flim

3

xx
  

              Hence the sequence 








 4
3

3n
  diverges. 

        

(b)  The sequence    ....,1,1,1,1,1)1( 1  n   We see that the terms of the  

      sequence oscillate between  1   and   -1 .  Thus  1)1(lim 


 n

n
  does not exist and the  

       sequence  1)1(  n  diverges. 

(c)  Let  x2e/x5)x(f    for  1x  , then using L’Hopital’s rule we obtain,      

        0
e2

5
lim

e

x5
lim)x(flim

x2xx2xx



























.  

                    Then  0
e

n5
lim

n2n











, and the sequence 









n2e

n5
  converges to 0. 

Note that all theorems of the limit can apply to the function nas)n(f  to evaluate  

)n(flim
n 

  directly. 

§§§§§§§§§§§§ 
 

Example  :4 

      Determine whether the following sequences converges or diverges 
















































n

n2

2

2

10.34

10.21
)c(

1n2

n2n3
)b(

6nn2

n5n3
)a(  

Solution 

2

3

n/6n/12

n/53
lim

6nn2

n5n3
lim)a(

2n2

2

n












. 

        Thus the sequence 
















6nn2

n5n3
2

2

 converges to  
2

3
 . 











 2n

2

n n/1n/2

n/23
lim

1n2

n2n3
lim)b( . 

        Thus the sequence 
















1n2

n2n3 2

 diverges. 
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3

2

310.4

210
lim

10.34

10.21
lim)c(

n

n

nn

n

n
















. 

       Thus the sequence 
















n

n

10.34

10.21
 converges to  

3

2
 . 

§§§§§§§§§§§§ 

Definition :  3 

 

 

 

 
 

 

Example  : 5 

The sequence  








 1n

n
 has the terms  ,...,

6

5
,

5

4
,

4

3
,

3

2
,

2

1
  then for every n,  

.1uk    Thus for any positive real number  1M   , the sequence 








 1n

n
 is bounded. 

 

Definition :  4 

 

 

 

 
 

 

 

 

Theorem  :  2 

 
 

 

 

N O T E 

The sequence in example (5) is monotonic increasing and is bounded, so it is 

converges.   It is easy to prove the following theorem, 

 

      A sequence   nu  is bounded if there is a real positive number M such 

that  : Muk  ,   for every k. 

 

      If  k1k uu   for every  k, the sequence  nu  is called monotonic 

increasing, while if  k1k uu   for every  k, it is called strictly increasing. 

Similarly, if, k1k uu   for every  k, the sequence is called monotonic 

decreasing, while if  k1k uu   for every  k,  it is called strictly 

decreasing 

Every bounded monotonic sequence has a 

limit. 

. 
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Theorem  :  3 

 
 

 

 

 

Example  : 6 

Determine whether the following sequences converges or diverges 

  n
n

03.1)b(,
3

2
)a(




















 
 

Solution 

(a)  Since 1
3

2

3

2



 , then ,0

3

2
lim

n

n








 


and 




















 
n

3

2
 converges to 0. 

(b)  Since  103.1   , then   ,03.1lim
n

n



and   n

03.1  diverges. 

§§§§§§§§§§§§ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 












 1rif

1rif0
rlim n

n

. 
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E x e r c i s e   ( 4– 1) 

 

Determine whether the sequence  nu  converges or diverges where nu  has the following 

expression:  

(1 ) 
2n3

n


      ,    (2  )  

1n

n


       ,     (3 ) 

1n)1(1                                 

(4 ) 
1n

1n2n2




     ,      (5 )     7n             ,     (6 )  

n21

n21




     

(7 )

n

6

5
6 







 
               ,      (8 )

n

)1(n n
      ,      (9 )     

n

8

7
8 








               

(10 )
1n

n2


                   ,     (11 )

n

n










1
1           ,     (12 )

n

nsin
   

(13 )
n

ncos
                  ,  (14 )

n

1
sinn            ,     (15 )

n

nln
)1( n   

(16 )
n/1n                          ,   (17 )

n

2

3

n
                     ,      (18 )  n)1.0(1   

(19 ) n1n           ,  (20 )  1n8                ,     (21)

4

7n3

3n2












  

  (22 ) 









n2

1
1                    , (23 )  nlne n

         ,     (24 )  nsin2 n
  

  (28)    
n

1n 
                        ,  (29) 

1n)1(              ,     (30)  nnn2   

(31) 
n2e/n5                        , 

9n

2
)32(

2 

      ,     (33)  


















6nn2

n5n3
2

2

  

  (34)    


















1n2

n2n3

2

2

         ,  (35)    


















1n2

n2n3 2

            ,     (36)    


















n

n

10.34

10.21
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2-   I n f i n i t e   S e r i e s 

An infinite series (or briefly, a series) is an expression of the form,  

,...a...aaa n321   or in summation notation,     


1n
na or simply   na , 

where  na   is the  nth  term of the series. 

 

We can define a sequence   nS  such that : 

,aaaS,aaS,aS 321321211    

nS  


1n
na  =  .a...aaa n321   

The sequence  nS  is called the sequence of partial sums of the series 


1n
na  

Definition :  5 

 

 

 

 
 

 

 

 

 

 

 

Example  : 7 

Determine whether the following series convergence or divergence:  
 )1n(n

1
 

Solution 

The nth term of this series can be rewritten (using partial fraction) as, 

 
1n

1

n

1

)1n(n

1
a n





  

The nth term of the sequence of partial sums is   

nS    =  naaaa  ...321  

                    






































1n

1

n

1
...

4

1

3

1

3

1

2

1

2

1
1  

 

      A series  


1n
na is convergent (or converges) if its sequence of partial sums 

 nS  converges, that is, LSn
n




lim ,  then  L  is the sum of the series and we write: 

 


1n
na  =  n321 a...aaa     =    L, 

and we say that the series   na  converges to L . If the sequence  nS  is divergent 

then the series  na is divergent (or diverges) and it has no sum. 
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We see that all numbers in  nS except the first and last numbers cancel, 

1
1n

1
1limSlim

n
n

n














. 

Thus the series converges to 1. 

 

§§§§§§§§§§§§ 

Note:  

The above series 
 )1n(n

1
   is called a telescoping series, since nS causes the 

terms telescope to  











1n

1
1  

 

Example  : 8 

Determine whether the series  






1n

1n)1(   converges or diverges. 

Solution 

The terms of sequence of partial sums are 

...,0S,1S,0S,1S,0S,1S 654321  the nth  term may be 

written as, 






.evennif0

.oddnif1
Sn  

Since the sequence of partial sums }{ nS oscillates between 1 and 0, it follows that 

n
n

S


lim does not exist. Hence the series diverges. 

§§§§§§§§§§§§ 
 

Example  : 9 

Determine whether the series 


1

2

n

n  converges or diverges. 

Solution 

The terms of sequence of partial sums are 

,...,14941S,541S,1S 321 

 .n...941S 2
n    

The sequence of partial sums grow beyond every number, and  nS is greater than or equal to 
2n   at each stage, then  


n

n
Slim , and hence the series diverges. 

§§§§§§§§§§§§ 
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     2.1   The  Geometric   Series 

One of the most important series occurs frequently in solutions of applied problems is 

the geometric series 

...ra...raraara 1n2

1n

1n 






  

where a and r are real numbers with  .0a   

 

Theorem  :  4 

 
 

 

 

 

 
 

Proof 

     If  1r ,  then,      ana...aaaSn   




n
n

Slim ,   and hence the series is diverges. 

    If  1r  ,  then,      





evennif0

oddnifa
Sn  

existnotdoesSn
n




lim ,   and hence the series is diverges. 

    If  1r  ,   1n2
n ar...araraS  ,    multiply both sides by r, 

         n32
n ar...arararSr  ,  subtracting these two equations, 

 )r1(aS)r1( n
n     or    

)r1(

)r1(a
S

n

n



  

Consequently, 

 
r1

ra
lim

r1

a
limSlim

n

nn
n

n 






 

n

n
rlim

r1

a

r1

a





  

By theorem (4.1.3) ,    














.1rif

,1rif
r1

a

Slim n
n

  

Hence the series converges to   
r1

a


  if  1r   and diverges if 1r  . 

§§§§§§§§§§§§ 

The geometric series ,   ...ra...raraara 1n2

1n

1n 






  

    (a) Converges and has sum   
r1

a
S


      if     1r  . 

    (b) Diverges if   1r  . 

. 
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Example  : 10 

Discuss the convergence of the series:     ...
243

1

81

1

27

1

9

1
    . 

Solution 

This series is a geometric series with :  .1
3

1
r,

9

1
a   Then the series 

converges to the   .
6

1

3/11

9/1

r1

a
sum 





  

§§§§§§§§§§§§ 

Example  : 11 

Prove that the following series converges and find its sum, 

....
8

1

4

1

2

1
124   

Solution 

This is a geometric series with :  
2

1
r,4a


 , i.e.  .1r    

Then this series converges to the sum :   .
3

8

2/11

4

1





 r

a
 

 

§§§§§§§§§§§§ 

Example  : 12 

Determine whether the series  .)1(
1

1







n

n   converges or diverges. 

Solution 

 ...1...111)1(
1n

1n  




  

This is a geometric series with :  , i.e.  .1r   Then it is divergent series. 

 

§§§§§§§§§§§§ 
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2-2 The  
thn  Term Test 

Theorem  :  5 

 
 

 

 

 

Proof .  

The nth term na  of the series can be expressed as 1nnn SSa   .  

If   S   is the sum of the series 


1n

na  , then we know that, 

     SSlim n
n




       and also,     SSlim 1n
n




 . 

Hence,   


n
n

alim n
n

Slim


-     0SSSlim 1n
n




. 

Note that the converse of this theorem is not true, i.e.  If  0lim 


n
n

a , it does not necessarily 

follow that the series 


1n

na is convergent. 

 

As a corollary of the above theorem, we obtain the following test for divergent. 

 

§§§§§§§§§§§§ 

Corollary :  1   ( The  
thn  term test ) 

 
 

 

 

 

 

 

 

 

 

 

 

If a series  


1n

na   is convergent, then,   0lim 


n
n

a . 

. 

 

 

For the series  


1n
na , 

(i)  If   0alim n
n




   or    does not exist, then the series is divergent. 

(ii) If  0alim n
n




,  the series may be convergent or divergent (Test 

fails). 

. 
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Example  : 13 

   Determine whether each of the following series converges or diverges 





 n

1n
)c(,n)b(,

10n3

n
)a( 2  

  

2

1n

n

1
)f(,

n

1
)e(,)1()d(  

Solution 

,0
3

1

10n3

n
lim)a(

n




  hence,   
 10n3

n    diverges. 

,0nlim)b( 2

n



   hence  

2n diverges. 

,01
n

1n
lim)c(

n






    hence  


n

1n diverges. 

,existnotdoes)1(lim)d( 1n

n




   hence   1n)1( diverges. 

,0
n

1
lim)e(

n




  hence  
n

1 may be convergent or  

                                                               divergent (test fails). 

,0
n

1
lim)f(

2n




 hence  
2n

1
may be convergent or  

                                                               divergent (test fails). 
 

 

§§§§§§§§§§§§ 

The series in parts (e) and (f) of the above example, further investigation is necessary 

to decide if the series converges or diverges. 

Whenever we have two convergent series we can add them, subtract them, and 

multiply them by constants, to make other convergent series. The next theorem gives these 

results, 

 

Theorem  :  6 

 

 
 

 

 

 

 

 

 

If   the series  


1n
na  and   



1n
nb  converges to A and B respectively, then, 

 (i)     


1n
nn ba    converges to    .BA   

 (ii)   


1n
nak 



1n
nak  converges to  Ak  ,   k   is a constant. 

. 
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Example  : 14 

Show that the series  


0n
n

nn

6

23
   converges. Find its sum. 

Solution 

  









 













 0n
n

0n
n

0n
nn

0n
n

nn

3

1

2

1

3

1

2

1

6

23
 

The first series  


0 2

1

n
n

  is a geometric series with 1
2

1
r,1a  . 

Then it converges to  .2
2/11

1



 

The second series 


0 3

1

n
n

  is a geometric series with 1
3

1
r,1a  . 

Then it converges to  .
2

3

3/11

1



 

Hence the series  


0n
n

nn

6

23
 converges to   .

2

1

2

3
2   

§§§§§§§§§§§§ 

Example  : 15 

Discuss the convergence of the series 





1n
1n3

8
.  Find the sum if it exists- 

Solution 

  





1n
1n3

8
   
















1n

1n

3

1
8  

the series  















1n

1n

3

1
8   is a convergent geometric series   13/1r,1a   .  

Then:        .12
2

3
8

3/11

1
8

3

8

1n
1n



















   

§§§§§§§§§§§§ 
 

Theorem  :  7 

 

 
 

 

 

 

 

      If  


1n
na  is a convergent series and   



1n
nb  is a divergent, then, 

  


1n
nn ba    is divergent. 

. 

. 
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Example  : 15 

Determine whether the series 















1

1

3

1
)1(

n
n

n   converges or diverges 

Solution 

  















1n
n

1n

3

1
)1(     











1n
n

1n

1n

3

1
)1(  

The first series  






1n

1n)1( is divergent, while 


1n
n3

1
 is a convergent geometric series 

,then the series ,   















1n
n

1n

3

1
)1(   is divergent 

§§§§§§§§§§§§ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       . 
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E x e r c i s e   ( 4– 2) 

 

(I) Determine whether the following series converges or diverges. If it converges,  

      find its sum. 

(1)   


1n
n4

7    ,   












1n

2n

3

2
)2(     ,    



1n
n

n

3

5
)1()3(           ,    (4)   



1n
n3

2    




1n

n2)5(     ,    







1n
1n

2n

9

4
)6(  ,   (7)   













1

1

3

e

n

n

             ,  (8)   







1n
1n

1n

3

2        

(9)   






1n

1nn 32                ,   (10) 


1
n e

1

n

              ,  (11) 1n

1

)2( 




n

             ,   






1n

1n5)12(         

 











1n
nn 3

1

2

5
)13(  ,    












1n
nn 2

3

5

3
)14(     ,   (15)  

















1n

1n
1n

5

1
)1(  ,  (16)  







1

2n)5(
n

    




0n
n

n

3

32
)17(        ,   (18)  



1n

n










5

1
     ,   (19) 






1n
1n3

8
           ,   



0n
n

n

2

31
)20(       

(21)    






1n

1n)1(   ,   (22)   







1n
1n

1n

5

2
       ,   (23)    
















1n
n

1n

3

1
)1(    

 

(II) Determine whether the following series converges or diverges. 

(1)   3 + 
4

3
 + ...  + 

1-4

3

n
+ ...    .       (2)   1 + 

3

1
 + ... + 

1-3

1
n

+ ...     . 

(3) ...
243

1

81

1

27

1

9

1
   .     (4) ...

16

1

8

1

4

1

2

1
    

(5)    ...
5

1
...

5

1
1

1

















 


n

. n (6)    ...
27

e

9

e

3

e
1

32

   .       

(7) ...
)100(

37
...0037.037.0 

n
 

 

(III) Determine whether the following series diverges or needs further investigation. 

(1)   




1n 1n5

n3
            (2)   





1n
3

3

1n3

n
            (3)   





1n
n 1e

1
                            

(4)   




1n

2

1n

n
              (5)   














1

1
sin

n n
n           (6)   



1n n

nsin
               

 (7)   




1n
n)5.0(2

1
     (8)   





1n 5n3

n
             (9)   



1n

2n                                  

(10)    











1n

n

n

3
1           (11)    













1n 8n7

n2
ln           (12)   



1n
ne

n
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3-   P o s i t i v e –T e r m   S e r i e s 

In the previous section, the convergence or divergence of several series obtained by 

finding a formula for the nth partial sum and determining whether the limit of  nS   as  

n  exist or not. Unfortunately, except in special series such as a geometric series or a 

telescoping series, it is often impossible to find an explicit formula for nS . However, we can 

develop tests for convergence or divergence of a series 


1n
na  that use the nth term na . 

These tests will tell us only whether the sum of the series exists or not and if will not give us 

this sum. However, consider only series 


1n
na with 0na , for every n (positive-term 

series).  

The convergence or divergence of other series can often be determined from that of a 

related positive-term series. 

For the positive term series  


1n
na  with 0an  ,   for every n, the sequence of partial sums      

,aaS,aS 21211  nS ,a...aa n21   1nn1n aSS    ,   

is monotonic increasing sequence 
 

Theorem  :  8 

 

 
 

 

 

 

 

 

       

 3-1 The  Integral  Test 

We may use the thn  term na  of a series  


1n
na  to define a function f such that 

na)n(f   for every positive integer n.    In some cases, If we replace n  with  x, we obtain a  
 

function that is defined for every real number  1x . 

 

The next result shows that if a function f  obtained in this way satisfies certain 

conditions, then we may use the improper integral  

1

dx)x(f  to test the series 
1n )n(f  for 

convergence or divergence. 

      If  


1n

na  is a positive-term series and if there exists a number M such 

that :   nS Ma...aa n21    for every n , then the series 

converges and has a sum MS  . If no such M exists, the series diverges. 

. 

. 
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I n t e g r a l   T e s t  

 

 

 

 

 

 

 

 

 

Example  : 16 

Prove that the harmonic series 


1

1

n n
  is divergent. 

Solution 

Let 
x

1
)x(f  , then .1x0

x

1
)x('f

2



  Since )x(f  is positive valued, 

continuous, and decreasing for 1x , we can apply the integral test  

 




)1t(lnlimxlnlimdx
x

1

t

t
1

t1

     (diverges). 

Then the harmonic series 


1n n

1
  diverges. 

§§§§§§§§§§§§ 

 

Example  : 17 

Discuss the convergence of the series 


1n
2n

1
 . 

Solution 

Let  
2x

1
)x(f  ,  then .1x0

x

2
)x('f

3



  Since )x(f  is positive valued, 

continuous, and decreasing function for 1x  , then 

1)1
t

1
(lim

x

1
limdx

x

1

t

t

1t1
2














      (converges). 

Then the series 


1n
2n

1
  converges. 

§§§§§§§§§§§§ 

 

 

      If  


1n
na is a series, let na)n(f   and let  )x(f   be the function obtained by 

replacing  n  by  x. If )x(f  is positive-valued, continuous, and decreasing for every 

real number  1x  , then the series 


1n
na  

(i) converges if: 


1

dx)x(f   converges.      ,  (ii) diverges if 


1

dx)x(f   diverges 
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Example  : 18 

Discuss the convergence of the series 






1n

n2
en      

Solution 

Let  
2xex)x(f  ,   .1x0e)1x2()x('f

2x2    

Since )(xf  is positive valued, continuous, and decreasing function for 1x , then 


















e2

1
)ee(lim

2

1
e

2

1
limdxex

222 t1

t

t

1

x

t1

x    (converges).  

Then the series  






1n

n2
en  converges. 

§§§§§§§§§§§§ 

We can use the integral test to prove the following theorem which may be used as a 

test for convergence or divergence. 

 

Theorem  :  9 

 

 
 

 

 

 

Proof 

Let  
px

1
)x(f   

If   ,1p  we have :     ,
1p

1

1p

x
limdxx

t

1

1p

t1

p


















  

which is finite for  ,1p  . Hence the p-series converges if  ,1p  . 

If   ,1p   we have  


1n n

1
 which is the harmonic divergent series. 

If    1p0  , then   0p1  ,  and, 

,)1(
1p

1

1p

x
limdxx

t

1

1p

t1

p 

















   (diverges). 

Hence the p-series diverges if  1p  . 

§§§§§§§§§§§§ 

 

      The   p-series  ,...
n

1
...

3

1

2

1
1

n

1
ppp

1n
p






 

(i) converges if  1p  .            (ii) diverges if   1p  . 

. 

. 

. 
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Example  : 19 

     Determine whether the series converges or diverges. 

(a)  


1n 3 2n

1
  ,    (b)   



1n
3n

1
    ,   (c)  



1n 5 3n

1
      ,   (d)  



1n 3n

1
 

Solution 

(a)   









1 1

3/23 2

11

n n nn
.   p-series  with  1

3

2
p  ,  divergent series.        

(b)   


1
3

1

n n
             p-series  with  13 p  ,  convergent series. 

(c)  


1
5 3

1

n n
            p-series  with  1

5

3
p  ,  divergent series . 

 (d)  


1
3

1

n n
          p-series  with  1

2

3
p  ,  convergent series. 

§§§§§§§§§§§§ 

 

    

3-2   T h e   C o m p a r i s o n   T e s t s 

 

The next test allows us to use convergent (divergent) series to establish the 

convergence (divergence) of other series. 

B a s i c   C o m p a r is o n    T e s t  

 

 

 

 

 

 

 

 

 

Example  : 20 

       Determine whether the series converges or diverges. 

 (a)  




1n
n52

1
   ,            (b)  





2n 1n

1
 

 

Let   


1n
na  and   



1n
nb  be positive term series, 

i) If 


1n
nb converges and nn ba   for every positive integer n, then : 



1n
na   converges. 

ii) If  


1n

nb diverges and nn ba   for every positive integer n, then: 


1n

na    diverges. 
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Solution 

(a)  For every  1n  ,        

n

nn 5

1

5

1

52

1











. 

The series   








1n

n

5

1
is convergent  (geometric series with 1

5

1
r  ),  then the series  






1n
n52

1
  is convergent. 

 

(b)  For every  2n  ,      
n

1

1n

1



   . 

The series  


1n n

1
is divergent  (p-series with 1

2

1
r  ),  then the series  





2n 1n

1
  

is divergent. 

§§§§§§§§§§§§ 

 

Example  : 21 

Determine whether the following series converges of diverges 

....
!n

1

!4

1

!3

1

!2

1

5

1
1

3

2
2   

Solution 

By ignoring the first four terms, we have, ....
!n

1

!4

1

!3

1

!2

1
  

Since,   ...,
2

1

24

1

!4

1
,

2

1

6

1

!3

1
,

2

1

2

1

!2

1
82

  and so on, 

then the remainder of this series from the fifth term is less than the convergent geometric 

series  







 1

2

1
r

2

1
n

. Then this series is convergent. 

§§§§§§§§§§§§ 
 

To apply the basic comparison test we need to have on hand a list of series that are 

known to converge and a list of series that are known to diverge and then prove that either    

nn ba    or  nn ba  . This is very difficult if na  is a complicated expression. The 

following comparison test is often easier to apply, because after deciding on   nb , we need 

only take of the quotient  nasb/a nb . 
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L i m i t   C o m p a r is o n    T e s t  

 

 

 

 

 

 

 

If the limit equal = or0 , it may be possible to determine whether the series  




1n
na  converges or diverges by using the comparison test. 

To find a suitable series 


1n
nb   to use in limit comparison test when na  is a quotient, 

a good procedure is to delete all terms in the numerator and the denominator of   na  except  
 

those that have the greatest effect on the magnitude. 
 

We may also replace any constant factor c by 1. 

 

Example  : 22 

   Determine whether the following series converges or diverges, 

      
 







 





 1n1n
2 1n

n
)b(,

2n

3n2
)a( ,    









1n 1n
n3 12

1
)d(,   

10n

n230
)c(  

Solution 

(a)   Let  
4n4n

3n2
a

2n



     and   

n

1
bn   , then   

  .02
4n4n

n3n2
lim

b

a
lim

2

2

nn

n

n








 

Since 






 1n1n
n

n

1
b   diverges,  

 






1n
2

2n

3n2  diverges. 

 

(b)   Let  
1n

n
a n


     and   1bn   , then   

  .01
1n

n
lim

b

a
lim

nn

n

n







 

Since  






 1n1n
n 1b   diverges by the nth-term test,,  then  





1n 1n

n  diverges. 

Let   


1n
na  and   



1n
nb  be positive term series. If there is a positive real number c 

such that :    0c
b

a
lim

n

n

n



 ,  then either both series converge or both series diverge. 

. 
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 (c)   Let  
10n

n230
a

3n



     and   

2n
n

1
b   , then   

         .02
10n

n2n30
lim

b

a
lim

3

32

nn

n

n









 

Since  






 1n
2

1n
n

n

1
b   is a convergent  p-series,  then  





1n
3 10n

n230  converges. 

  

(d)   Let  
12

1
a

nn


     and   

n

nn
2

1

2

1
b 








  , then 

           .01
)2/1(1

1
lim

12

2
limlim 







 nnn

n

n
n

n

n b

a
 

Since  


















11 2

1

n

n

n

nb   is a geometric convergent series,  then  


 1 12

1

n
n

 converges. 

§§§§§§§§§§§§ 

 

Example  : 23 

      Determine whether the following series converges or diverges, 















 1n
2

3 2

1n 2 1nn2

4n
)b(,

1nn

3
)a(  

Solution 

(a)   Let  

1nn

3
a

2
n



     and   
n

1
bn   , then   

   .03

1nn

n3
lim

b

a
lim

2nn

n

n







 

Since  






 1n1n
n

n

1
b   diverges,  then  





1n 2 1nn

3  diverges. 

 (b)   Let  
1nn2

4n
a

2

3 2

n



     and   

3/42

3/2

n
n

1

n

n
b   , then   

 .0
2

1

1nn2

n4n
lim

b

a
lim

2

3 26

nn

n

n









 

Since  






 1n
3/4

1n
n

n

1
b   is a convergent  p-series 

Then    




1n
2

3 2

1nn2

4n
 converges. 

§§§§§§§§§§§§ 
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Example  : 24 

Does the series  


1n
3n

nln
   converges ? 

Solution 

We know that nln   increases more slowly than n  as   n , i.e.   

nnln     as   n . Let  
3n

n

nln
a      and   

23n
n

1

n

n
b   , then   

 )failsteast(0
1

n/1
lim

n

nln
lim

b

a
lim

nnn

n

n



 

Then we can not decide the convergence by this test, we can use the basic comparison 

test as follows ,  
233 n

1

n

n

n

nln
 .  The series  



1n
2n

1
  is a convergent  p-series 

Then  


1n
3n

nln
  is a convergent series. 

§§§§§§§§§§§§ 
 

3-3   The Ratio And Root Tests 

 

As we said before, it is not always possible to discuss the convergence of the series by 

using the basic comparison and limit comparison tests for some complicated expressions. For 

the integral test to be applied, the terms of the series must be decreasing as n increasing, or we 

might not find a formula for the nth term test. These conditions often rule out series that 

involve factorials and other complicated expressions. The following two tests can be used to 

determine convergence or divergence when other tests are not applicable. 

The first test is the ratio test which is often effective when terms of the series contain 

factorials or terms contains powers of n. 

 

T h e   R a t i o   T e s t  

 

 

 

 

 

 

 

Let  na   be a positive-term series, and suppose that: L
a

a
lim

n

1n

n





.  Then 

(i) If     1L  ,            the series is convergent. 

 (ii) If   1L     or  , the series is divergent. 

(iii) If   1L  ,            the series may be convergent or divergent, (test fails). 
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Example  : 25 

       Test the following series for convergence or divergence, 








 1n
2

n

1n

n

n

2
)b(,

!n

3
)a(  

Solution 

  (a) ,
!)1n(

3
a,

!n

3
a

1n

1n

n

n






then     

1n

3

3

!n
.

!)1n(

3

a

a

n

1n

n

1n








 . 

    .10
1n

3
lim

a

a
lim

nn

1n

n











Then the series 


1n

n

!n

3 is convergent. 

 

(b)   ,
)1n(

2
a,

n

2
a

2

1n

1n2

n

n






then   

1n2n

n2

2

n
.

)1n(

2

a

a

2

2

n

2

2

1n

n

1n








 . 

      .12
1n2n

n2
lim

a

a
lim

2

2

nn

1n

n











 

Then the series 


1n
2

2

n

2
is divergent. 

§§§§§§§§§§§§ 

 

Example  : 26 

Discuss the convergence of the series 


1n

n

!n

n
 

Solution 

,
!)1n(

)1n(
a,

!n

n
a

1n

1n

n

n







 then     

n

n

1n

n

1n

n

1n

n

1n

n

!n
.

!n)1n(

)1n(

n

!n
.

!)1n(

)1n(

a

a







 















 .1e
n

1
1lim

n

1n
lim

a

a
lim

n

n

n

nn

1n

n

















 







 

Then the series   


1n

n

!n

n
 is divergent. 

§§§§§§§§§§§§ 
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Example  : 27 

      Determine whether the following series converges or diverges, 















 1n
n

n

1n

n

1n 3

52
)c(,

!)n2(

!n!n4
)b(,

!)n2(

!n!n
)a(  

Solution 

(a)  
!n!n

!)n2(
.

!)2n2(

!)1n(!)1n(

a

a

n

1n






2n4

1n

)1n2()2n2(

)1n()1n(









             

         .1
4

1

2n4

1n
lim

a

a
lim

nn

1n

n













 

Then the series  


1n !)n2(

!n!n
 is convergent. 

 

(b)  
!n!n4

!)n2(
.

!)2n2(

!)1n(!)1n(4

a

a

n

1n

n

1n









1n2

)1n(2

)1n2()2n2(

)1n()1n(









  

     )failstest(.1
1n2

)1n(2
lim

a

a
lim

nn

1n

n












 

So we try to discuss the convergence of this series by any other method. We note that, 

...
35

128

5

16

3

8
2

!)n2(

!n!n4

1n






 

The elements of the sequence of partial sums are:  

     ....,
5

118
S,

3

14
S,2S 321   

This means that the sequence of partial sums are always grow and the series  




1n !)n2(

!n!n4
 is divergent. 

 

(c)  
52

52
.

3

1

52

3
.

3

52

a

a

n

1n

n

n

1n

1n

n

1n
















 . 

      .1
3

2

2/51

2/52
lim

3

1

52

52
.

3

1
lim

a

a
lim

n

n

nn

1n

nn

1n

n





















 

Then the series 


1n
n

n

3

52
  is convergent. 

§§§§§§§§§§§§ 
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Example  : 28 

For what positive values of x does the series converges? 

 ....
1n2

x
...

7

x

5

x

3

x
x

1n2753







 

Solution 

  2

1n2

1n2

n

1n x
1n2

1n2

x

1n2
.

1n2

x

a

a














 . 

 .xx
1n2

1n2
lim

a

a
lim 22

nn

1n

n












 

The series converges if  1x2   , then the series converges if  x is positive and less 

than 1 and diverges if  x  greater than one. 

§§§§§§§§§§§§ 

 

The second test is the root test which is often effective when the terms of the series 

contains powers of n. 

 

T h e   R o o t   T e s t  

 

 

 

 

 

 

 

 

Example  : 29 

     Discuss the convergence of the following series  








 1n
4

n

1n
n

2

n

3
)b(,

2

n
)a(  

Solution 

    (a) ,
2

n
a

n

2

n  1
2

1

2

n
lim

2

n
lim

n/2

n

n
n

2

n



,  The series  



1n
n

2

2

n
 is 

convergent. 

    (b)  ,
n

3
a

4

n

n  13
n

3
lim

n

3
lim

n/4n

n
4

n

n



, The series  



1n
4

n

n

3
 is divergent.   

 

§§§§§§§§§§§§ 

Let  na   be a positive-term series, and suppose that: Lalim n
n

n




.  Then 

(i) If     1L ,            the series is convergent. 

 (ii) If   1L    or  , the series is divergent. 

(iii) If   1L  ,            the series may be convergent or divergent, (test fails). 
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Example  : 30 

Discuss the convergence of the series 






1n
n2

1n3

n

2
     

Solution 

,
n

2
a

n2

1n3

n



 10
n

2
lim

n

2
lim

2

n

1
3

n

n
n2

1n3

n









. 

Then the series  






1n
n2

1n3

n

2
   is convergent. 

§§§§§§§§§§§§ 

 

 

Example  : 31 

         Discuss the convergence of the series  

n

1n n

3
1 














  . 

Solution 

,
n

3
1a

n

n 







 )failstest(1

n

3
1lim

n

3
1lim

n

n

n

n





















. 

The series need further investigation. Use the nth term test, 

0e
n

3
1limalim 3

n

n
n

n









 


. So the series diverges. 

§§§§§§§§§§§§ 
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E x e r c i s e   ( 4– 3) 

 (I) Use the integral test to determine whether the following series converges or diverges, 

 (1)   






1n

n2 3
en              



1n n

2

3
e

n
)2(                      (3)   





1n 2n3

1
                       






1n
2 1n

n
)4(                (5)   





1n )5n2(n

1
      





1n 5n2

1
)6(  

 (7)   




1n
2n161

1
          





1n )1n(lnn

1
)8(           (9) 



1n
2)n(lnn

1
 






1n
3

2

3n

n
)10(              (11)   





0n 2 1nn

1
.      





1n
2 1n

3
)12(  

 

(II) Use the p-series test to determine whether the following series converges or diverges. 

(1) 


1
3 2

1

n n
                  (2)   



1
4/3

1

n n
                  (3)   



1
3

1

n n
 

(4)  


1
9 11

1

n n
                 (5)  



1
5 3

1

n n
                    (6)  



1
3

1

n n
 

 

(III) Use the basic comparison test to determine whether the following series converges or 

diverges, 

 (1) 




1n
24 1nn

1
   





1n
2n

2

)1n(e

7n8
)2(           (3) 



1n
2n

ncos2
  






1n
3

2

1n

n
)4(                (5)   





1n
2 1n

n
           





1n 3 n8n4

1
)6(  

 

(IV) Use the limit comparison test to determine whether the following series converges or 

diverges, 

(1)   




1n
n

2

)1n(e

7n8
        





1n
3

5

5n

n
)2(                (3)   





1n
3

2

1n

n
 

 (4)   




1n
3

2

1n

1n
                (5)   





1n 3 n8n4

1
    





1n 3

5 2

1x

1nx
)6(  

 (V)  Use the ratio test or the root test. Discuss the convergence of the following series 
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


1n

n

!n

5
)1(                   





1n
2

n

4n

2
)2(                  



1n
2

n

n

4
)3(   




1n

n

!n

100
)4(               



1n n4

1
)5(                         



1n
ne

!n
)6(  

(7)  












1n

n

7n2

5n3
          





1n
3)1n(

!n
)8(               (9)  

2

1

2
1

n

n n













   




1n
n

10

10

n
)10(               



1n
3n

!n
)11(                       



1n

10

!n

10n
)12(  




1n
n3

n
)13(                  







1n
n

1n

)n(ln

5
)14(                 (15)  

n

1n n

2
1 














                     

 

 (VI) Determine whether the following series converges or diverges, 

 (1)    
n

n

51

1 3




                 (2) 



1n !n

)2n()1n(
     (3)   

72

3
2 n

n
  

 (4)   


 1 ln1

1

n n
       (5) 







1n

nen                    (6)   












1n

n

1n3

n
       

(7)   
2n

nln
                       (8)   

 



1n
2

nln

1
              (9) 

 )1n(n

1
   

(10)  




1n
2 1n

nlnn
    (11) 





1n
n

n2

32

2n
             (12) 





1n
2nn

n1
 

(13) 




1n 3 1n2

1
     (14)  





1n
n

n

51

31
               (15)   

n

1n n

3
1 














 

(16)   


 



1
3

2

3

14

n nn

nn
    (17)   

1n

n
             (18)   



1n nlnn

1
  

(19)  


1n

n1n       (20)   




1n
2 1n

n
    (21)   





1n
3 n3n

nn
 

(22)   




1n
3 1n2

nln
            (23)   







1n

n4 2
en    (24)    












1n

n

n

1
1                        
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4-   A l t e r n a t i n g   S e r i e s  ,  A b s o l u t e  A n d      

      C o n d i t i o n a l   C o n v e r g e n c e 

    4-1 Alternating Series 

 

The tests for convergence that we have discussed in the previous section can be 

applied only to positive-term series. We now consider infinite series that contain both positive 

and negative terms. One of the most important type is an alternating series, in which the terms 

are alternately positive and negative, 

,...a)1(...aaaaa)1( n
n

1n
4321n

n  




with  0a k    for every k. 

A l t e r n a t i n g   S e r i e s   T e s t  

 

 

 

 

 

 

 

There are two methods to prove (i) 

 (1) Directly, by proving that :   0aa 1nn    

(2) Express na by )n(f and replace n by x and then prove that )x(f   is 

   decreasing i.e.  0)x('f   for every 1x  . 
 

Example  : 32 

Discuss the convergence of the following series, 

       (a)   






1n

1n

n

1
)1(  ,          (b)   







1n
2

1n

n

1
)1(  

Solution 

(a)  
n

1
a n  ,   

x

1
)x(f,

n

1
)n(f   

 (i)   0
1

)('
2


x
xf


   for all  1x , then  }{ na  is decreasing 

 (ii)  .0
n

1
limalim

n
n

n



 

       Then the series   


1n

n

n

1
)1(   is convergent. 

The alternating series  






1n
n

1n a)1( is convergent if the following two  

conditions are satisfied; 

 

        (i)   }{ na  is decreasing.           ,     (ii)     .0alim n
n




 

 



Chapter 4                                                                                                           Infinite series  

                                                                                                                          

   

 

 144 

(b)  
2n

n

1
a   ,       

22 x

1
)x(f,

n

1
)n(f   

 (i)   0
x

2
)x('f

3



   for all  1x  , then  }a{ n  is decreasing 

 (ii)  .0
n

1
limalim

2n
n

n



 

       Then the series   


1n
2

n

n

1
)1(   is convergent 

 

§§§§§§§§§§§§ 
 

Example  : 33 

Discuss the convergence of the following series, 

        (a)  









1n
2

1n

3n4

n2
)1(     ,       (b)  










1n

1n

3n4

n2
)1(  

Solution 

(a)  
3n4

n2
a

2n


    ,   
3n4

n2
)n(f

2 
     ,  

3x4

x2
)x(f

2 
  

    
22

2

)3x4(

)x8()x2()2()3x4(
)x('f)i(




  

                  0
)3x4(

6x8
22

2





     for all 1x  ,   then  }a{ n  is decreasing 

    (ii)  .0
3n4

n2
limalim

2n
n

n






 

       Then the series  









1n
2

1n

3n4

n2
)1(   is convergent. 

  

   (b)  
3n4

n2
a n


 ,  

3x4

x2
)x(f,

3n4

n2
)n(f





  

    
2)3x4(

)4()x2()2()3x4(
)x('f)i(




    

                              0
)3x4(

6

2



  for all 1x  ,       then  }a{ n  is decreasing 

 (ii)  .0
2

1

3n4

n2
limalim

n
n

n






 

       Then the series  









1n

1n

3n4

n2
)1(   is divergent. 

§§§§§§§§§§§§ 
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4-2   Absolute And Conditional Convergence 

Note that:   in example (1) we obtain, 

       






1n

1n

n

1
)1( converges while   



1n n

1
 diverges                            

 






1n
2

1n

n

1
)1(  converges while   



1n
2n

1    converges too. 

Now we ask our-self what is the difference between theses two series? , the answer of 

this question leads us to the following definitions. 

 

Definition :  6 

 

 

 

 
 

 

 

 

 

 

According to these definitions, the series   






1n
2

1n

n

1
)1(  is absolutely convergent 

while the series   






1n

1n

n

1
)1(   is conditionally convergent. 

 

The following theorem tells us that absolute convergence implies convergence of the series. 

 

Theorem  :  10 

 

 
 

 

Corollary  :  2 

 

 
 

(1) A series 


1n

na is absolutely convergent if the series, 

   ...a...aaa n2
1n

1n  




   is convergent. 

(2) A series 


1n
na  is conditionally convergent if 



1n
na  is convergent and    




1n
na is divergent. 

 

If 


1n
na is absolutely convergent, then 



1n
na  is convergent 

. 

. 

. 

 

 
If  



1n
na   diverges, the 



1n
na  diverges. 

. 

. 
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Note that:   If  


1n
na  diverges, then  



1n
na  may be converges or diverges. 

Example  : 34 

Determine whether the following series converges or diverges,   

                  ....
2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1
8765432
  

Solution 

The series is neither alternating nor geometric no positive-term, so none of the earlier 

tests can be applied. Let us consider the series of absolute values, 

....
2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1
a

8765432n   which is a geometric 

series with  12/1r  ,  thus the given series is absolutely convergent and hence the given 

series is convergent. 

§§§§§§§§§§§§ 

 

Example  : 35 

Discuss the convergence of the series 


 1n
2n

nsin
 . 

Solution 

The series is neither alternating nor geometric nor positive term, so 




 1n
2n

nsin



 1n
2n

nsin
. 

Since 1nsin  , then the series  


 1n
2n

nsin
 



 1n
2n

1
. 

Since the series  


 1n
2n

1
  is convergent and by the basic comparison test, then 

 the series  


 1n
2n

nsin
  converges, i.e. the series  



 1n
2n

nsin
 is absolutely convergent, and 

hence,  the series 


 1n
2n

nsin
 converges. 

§§§§§§§§§§§§ 
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Example  : 36 

Discuss the convergence of the series 









1n

1n

2n3

n
)1(  

Solution 

      ,
2n3

n
a n


     .0

3

1

2n3

n
limalim

n
n

n







 

Then the alternating series, 









1n

1n

2n3

n
)1( is divergent.  

By the thn  term test we see that,   









1n

1n

2n3

n
)1(   





1n 2n3

n
is divergent. 

We see from the preceding discussion that an alternating series may be classified in exactly 

one of the following ways : 

    **     absolutely convergent series 

      **   conditionally convergent series 

          **   divergent series 

The following two tests may be used to investigate absolute convergence. 

R a t i o   T e s t    F o r    A b s o l u t e    C o n v e r g e n c e 

 

 
 

 

 

 

 

 

 

R o o t   T e s t    F o r    A b s o l u t e    C o n v e r g e n c e 

 

 
 

 

 

 

 

 

Let  na  be a series of non zero terms, and suppose that: L
a

a
lim

n

1n

n





.,  Then 

      (i)   If     1L ,     the series is absolutely convergent. 

      (ii)   If   1L    or  ,    the series is divergent. 

      (iii) If   1L ,      the series may be absolutely convergent, conditionally  

             convergent or divergent, (test fails). 

. 

. 

. 

 

 Let  na   be a series of non zero terms, and suppose: Lan
n

n



lim   , Then 

      (i)   If     1L ,     the series is absolutely convergent. 

      (ii)   If   1L    or  ,    the series is divergent. 

      (iii) If   1L ,      the series may be absolutely convergent, conditionally  

             convergent or divergent, (test fails). 

. 

. 

. 
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Example  : 37 

Determine whether the following series is absolutely convergent, conditionally 

convergent, or divergent. 

(a) 




 


1

2
1

2

4
)1(

n
n

n n     ,        (b)  









1

1

1
)1(

n

n

n

n  

(c)  




 


1
2

1 1
)1(

n

n

n

n
      ,      (d)  






1

1 )3.0()1(
n

nn  

Solution 

(a)   
1n

2

1nn

2

n
2

4)1n(
a,

2

4n
a







  ,   then     

       
4n

5n2n

2

1

4n

2
.

2

4)1n(

a

a

2

2

2

n

1n

2

n

1n













 . 

       .1
2

1
)1(

2

1

4n

5n2n
lim

2

1

a

a
lim

2

2

nn

1n

n



























 

Then the series 









1n
n

2
1n

2

4n
)1( is absolutely convergent. 

 

 (b)   ,
2n

1n
a,

1n

n
a 1nn







 

then     

         
nn

nn

n

n

n

n

a

a

n

n

2

121
.

2

1
2

2

1











 . 

         )(.1
2

12
limlim

2

2
1

failstest
nn

nn

a

a

n
n

n

n























 

The series needs more investigations, by the second condition for alternating series test, 

,
1n

n
a n


     .01

1n

n
limalim

n
n

n






 

The series is divergent. 

 

 (c)   ,
)1n(

n2
a,

n

n1
a

21n2n






  then     

       
3

232

2
n

1n

)1n(

n2n

1n

n
.

)1n(

2n

a

a









 . 

       )(.1
)1(

2
limlim

3

23
1

failstest
n

nn

a

a

n
n

n

n























. 
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By alternating series test, 

(i) 0
x

2x
)x('f,

x

x1
)x(f

32






  for all  1x   

(ii)   .0
n

n1
limalim

2n
n

n







 

Then    









1n
2

1n

n

1n
)1(  converges, but the absolute value of the series 

 
























1n
2

1n1n 1n
22

1n

n

1

n

1

n

1n

n

1n
)1(  

which is a sum of convergent and divergent series, i.e. which is divergent series. Then  











1n
2

1n

n

1n
)1(  is conditionally convergent series. 

 

(d)   1n
1n

n
n )3.0(a,)3.0(a 

  then    . 

        .13.0
)3.0(

)3.0(
lim

a

a
lim

n

1n

nn

1n

n

























 

Then the series  






1n

n1n )3.0()1(  is absolutely convergent. 

§§§§§§§§§§§§ 
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E x e r c i s e   ( 4– 4) 

(I) Determine whether the following series converges or diverges, 

(1)    






1n
3/1

1n

n

1
)1(               ,   (2)     







1n

n1n 5n)1(  , (3)   






1n

1n)1(                                                 

(4)   









1n
3

1n

71n

3
)1(  ,   (5)    










1n
2

1n

7n

1
)1(  , (6)   







1n
3

1n

n

2
)1(  

(7)     






1n

n1n e1)1(  ,   (8)     






1n

1n )n/1(sinn)1(   , (9)   






1n
n

1n

3

n
)1(                                  

(10)   






1n
2/3

1n

n

1
)1(              ,   (11)  












1n
n2

n2
1n

1e

1e
)1(             , (12) 












1n
n

n
1n

1e

1e
)1(  

(13)  
1n

1n
)1(

1n

1n




 





 ,   (14)  










1n
n

2
1n

7

1n
)1(  ,(15)  





  





 nnn)1(
1n

1n        

 

(16)  
)1n(n

3n
)1(

1n

1n




 




  ,   (17)  
nln

n
)1(

1n

1n
 




   , (18) )3()1(
1n

1n
 




  

(19)  
2

1

1n

1n

n

ntan
)1(






          ,    (20)   







1n

1n )n/1(sinn)1(                                                               

 

(II) Determine whether the following series is absolutely converges, conditionally convergent,  

      or divergent, 






n

1n
3n

n2
)1(   ,    




n

1n

1n

!n

7
)1()2(   ,   












n

1n
nn 3

1

2

1
)3(  

 



n

1n

n1n 5)1()4(   ,    











n

1n
n

1
2

1
)5(  ,  







n

1n

1n

1n

n
)1()6(  

 






 



n

1n
n2

n
)7(   ,   



n

1n
n3

n3

n

e
)8(              ,    




n

1n

1n

!)n2(

1
)1()9(  








n

1n
3

1n

1n

n
)1()10(   ,  




n

1n

n)5()11(       ,  



n

n

n
n

n

n

1

2
1

!

3
)1()12(  








n

1n

3
1n

1n

n
)1()13(    ,   




n

1n

10
1n

!)n2(

n
)1()14(  ,  









n

1n
5

2
1n

1n

)1n(
)1()15(   

 



n

1n

1n

nn

1
)1()16(    ,   




n

1n

1n

!n

2
)1()17(   ,  



n

1n
2n

nsin
)18(  










n

1n
n

n
1n

31

41
)1()19(   ,  







n

1n
n

n2

)n(

)1n(
)20(  ,   




n

1n
n

n
1n

e

n
)1()21(                                                                           
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5-    P o w e r   S e r i e s  

The power series in (x - c) is a series of the form,             

,...)cx(a...)cx(a)cx(aa)cx(a n
n

2
210

0n

n
n  





 

where c is called the center of the series and ...,,...,, 10 naaa are the coefficients of the 

series. When the center c = 0, the power series reduces to, 

,......2

210

0






n

n

n

n

n xaxaxaaxa  

In a special case when the coefficients 1na , for all n, the series takes the form,       

,...)(...)()(1)( 2

0






n

n

n cxcxcxcx  

which is a geometric series. This series converges if 1 cx , which gives           

11..,1)(1  cxceicx  

 and it converges to :       
)(1

1

cx 
 . 

The main objective of this section is to determine all values of x for which the power series 

converges. Every power series in (x - c) converges if  x = c ,  since  

0

2

210 ...)0(...)0()0( aaaaa n

n  . 

To find other values of x that produce convergent series, we often use the ratio test for 

absolute convergence. 

 

Example  : 38 

Find all values of x for which the following power series is absolutely convergent: 

       


1n

n

n

)3x(
 

Solution 

If we let         
n

)3x(
u

n

n


  ,  then  

        .
)3x(

n

1n

)3x(
lim

u

u
lim

n

1n

nn

1n

n 

























  

                              .3x3x
1n

n
lim

n














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For convergence  ,13 x  

i.e.   131  x , i.e.   .42  x  

The series is divergent if :     ,13 x     i.e.   if      4xor2x  . 

If   ,13 x   the series may be converges or diverges, so we must discuss the 

convergence at   2x  and at    .4x  

At   2x : 



 





 1n

n

1n

n

n

)1(

n

)3x(
  which is a convergent alternating series. 

At  4x : 
 





 1n1n

n

n

1

n

)3x(
   which is a divergent (harmonic) series. 

So, the power series is absolutely convergent for every x in the semi-open 

interval  [2,  4)   and diverges everywhere. 

§§§§§§§§§§§§ 

Example  : 39 

 Find all values of x for which the following series is absolutely convergent. 


1 !n

n

n

x
 

Solution 

If we let   
!n

x
u

n

n  ,  then 

.0
1n

x
lim

x

!n

!)1n(

x
lim

u

u
lim

nn

1n

nn

1n

n































 

 

The limit is less than 1 for every value of x, and hence, the power series is absolutely 

convergent for every real number x. 

§§§§§§§§§§§§ 

Example  : 40 

Find all value of x for which the following series is convergent 


1

!
n

nxn  

Solution 

If we let   n

n xnu ! ,  then 














 











x)1n(lim

x!n

x!)1n(
lim

u

u
lim

nn

1n

nn

1n

n
for all values  of x 

except at x = 0. Hence the power series is convergent only if  x = 0. 

§§§§§§§§§§§§ 
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The following theorem will describe the solutions of the above examples in more 

general way. 

 

Theorem  :  11 

 

 
 

 

 

 

 

 

 

In case (iii) of the above theorem, the endpoints c - r and c + r of the interval must be 

investigated separately. 

 

Definition :  7 

 

 

 

 

 
 

 

 

 

 

In example (38) above, the radius of convergence is 1 and the interval of convergence 

is ]4,2[ . In example (39), the interval of convergence is  ),(  and we write  r . In 

example (40),  0r  . 

 

 

 

 

 

If  





0

)(
n

n

n cxa   is a power series, then exactly one of the following is true; 

(i) The series converges only if    x - c  =  0, i.e., if   x  =  c. 

(ii) The series is absolutely convergent for every x. 

(iii) There is a number   r > 0   such that the series is absolutely convergent if x is in  

      the open interval (c – r, c+ r)  and divergent if:   x  <  c - r    or   x  >  c + r 

. 

 

 

The number r in theorem (11) is called the radius of convergence of the 

series. The totality of numbers for which a power series converges is called its 

interval of convergence. If the radius of convergence r  is positive, then the interval 

of convergence is one of the following  )rc,rc[,]rc,rc(,)rc,rc(  , 

.]rc,rc[   
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Example  : 41 

Find the radius and interval of convergence of the power series,  


1n

n

n

x
 . 

Solution 

Let     
n

x
u

n

n  ,     then  

xx
1n

n
lim

x

n

1n

x
lim

u

u
lim

nn

1n

nn

1n

n































 

The series  converges for  11..1  xeix   and diverges for   1x    

i.e.   .1xor1x   

At   1x : 


1n

n

n

x
  =  



1n
2/1n

1
  which is a divergent p-series 








 1

2

1
p . 

At   1x  : 


1n

n

n

x
  =  



1n
2/1

n

n

)1(
  which is a convergent alternating series. 

Then the radius of convergence  1r  and the interval of convergence is .)1,1[  

§§§§§§§§§§§§ 
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E x e r c i s e   ( 4– 5) 

 

(I) Find the radius and interval of convergence for the following series 

(1)    


 0n
n

n2

3

xn
         ,     (2)     

n

0n

x
4n

1








             ,    (3)    






1n

n
1n

n

x
)1(  

(4)    
n

0n
3

x
1n

1








         ,     (5)     


 0n

nn

!n

x10
   ,   (6)  







1n

1n
n

x
n

)3(
   

(7)    











0n

n2
1n

1n

)3x(n
)1(      ,      (8)    





 1n

nx
)1nln(

1
  ,   (9)  









0n
n

1n2

)4(

x
 

  (10)  


 1n

n

n n

x

4

1
         ,      (11)  

n

0n

x
!)n2(

!)n3(





       ,   (12) 






0n
n2

n1n

3

x10
 

(13)  




 0n

n

4n3

)4x3(
         ,      (14 ) 





 1n

n

)1n(n

)2x(
               ,    (15) 



 1n

n

n25

)5x(
 

  (16)  




 0n

n

1n2

)3x(
         ,      (17 ) 

n

0n
n

x
100

!n





                   ,   (18) 




 0n

nn2

1n

)2x(3
 

(19)  





0n
1n2

n2

3

)1x(n
         ,      (20)   



 1n
n

n

e

)ex(nln
   ,   (21) 







0n
n2

n1n

4

x10
 

            (22)   


 1n
n

n

5n

)5x(
          ,      (23 )  



1n

n

n

)3x(
     ,   (24) 










1n
n

n1n
n

n

)1x(e
)1(  

(II)  Find the radius of convergence of the following power series for positive integers 

  (1)  


 0n
n

n

10

)6x(!)1n(
           ,    (2)  



 1n

nn

!n

xn
                                                     

 

(III) Find the radius of convergence of the following power series for positive integers  

      c   and   d . 

(1)  




 0n

n

!)dn(!n

x!)cn(
                ,    (2)  



 0n
c

n

)!n(

x!)nc(
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6-   T a y l o r   A n d   M a c l a u r i n   S e r i e s 

A power series    n
n

n
n xaor)cx(a  determines a function  )x(f  whose 

domain is the interval of convergence of the series. Specifically, for each x in this interval, we 

let )(xf  equal the sum of the series and we say that   n
n )cx(a  or  

n
n xa  is a power 

series representation for  )x(f . 

Numerical computations using power series provide the basis for the design of 

calculators and construction of mathematical tables. In addition to this use, differentiation and 

integration can be performed by using the power series representation. 

One of the most important power series representation for a function )(xf  is the 

Taylor series. 

 

  Taylor  Series 

If a function )x(f  ha a power series representation,    n
n )cx(a)x(f  

with radius of convergence  ,0r  then  )c(f )k(  exists for every positive integer k and  

!n/)c(fa )n(
n   .  

Thus 

 

 

 

 

A special case from Taylor series if at  0c  is the Maclaurin series. 

 

Maclaurin Series 

If a function )x(f  ha a power series representation,   n
n xa)x(f  

with radius of convergence  ,0r  then  )0(f )k(  exists for every positive integer k and  

!n/)0(fa )n(
n   .  

Thus 

 

 

 

...)cx(.
!n

)c(f
...)cx(.

!2

)c(''f
)cx(.)c('f)c(f)x(f n

)n(
2   

...x.
!2

)0(''f
...x.

!2

)0(''f
x.)0('f)0(f)x(f 22   
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Example  : 42 

Find the Taylor series for the function  xsin)x(f   in a power series at 6/x  . 

Solution 

   
2

1
a

2

1

6
f,xsin)x(f 0 







 
  

2

3
a

2

3

6
'f,xcos)x('f 1 







 
  

)!2(2

1
a

2

1

6
''f,xsin)x(''f 2













 
  

)!3(2

3
a

2

3

6
'''f,xcos)x('''f 3













 
  

Then :   ....
6

x
!3

1

2

3

6
x

!2

1

2

1

6
x

2

3

2

1
xsin

32








 








 








 
  

§§§§§§§§§§§§ 

 

Example  : 43 

 Find the Maclaurin series representation for the function  xexf )(  

Solution 
x)n( e)x(f...)x(''f)x('f)x(f   

Thus,   1)0(f...)0(''f)0('f)0(f )n(   

Then :  ...
!n

x
...

!3

x

!2

x
x1e

n32
x    . 

§§§§§§§§§§§§ 

 

Example  : 44 

 Find the Maclaurin series for the function  xsin)x(f   

Solution 

 From example (42), we obtain, 

1)0('''f,0)0(''f,1)0('f,0)0(f   

Then : 

....
!7!5!3!1

sin
753


xxxx

x  

§§§§§§§§§§§§ 
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Now the question that arises here is, what conditions on a function guarantee that a 

power series representation exists ?  We shall next obtain such conditions. Let us begin with 

the following definition. 

 

Definition :  8 

 

 

 

 
 

 

 

 

 

  

 

Theorem  :  12 

 

 
 

 

 

 

The term nR  in theorem (12) is called the Taylor remainder of  f  at  c. If 0c   is )(xRn  the 

Maclaurin remainder of  f. 

 

Now, the sufficient conditions for the existence of power series representation for a 

function are given by the following theorem. 

 

Theorem  :  13 

 

 
 

 

 

 

Let  c  be a real number and let   f   be a function that has n derivatives at c. The nth-

degree Taylor polynomial )x(Pn  of   f  at  c  is, 

.)cx(
!n

)c(f
...)cx(

!2

)c(''f
)cx()c('f)c(f)x(P n

)n(
2

n   

and the nth degree Maclaurin polynomial of  f  at  0  is, 

.x.
!n

)0(f
...x.

!2

)0(''f
x.)0('f)0(f)x(P n

)n(
2

n   

Note that  )x(Pn   is the stn )1(  partial sum of the series 

)rc,rc[,]rc,rc(,)rc,rc(  , .]rc,rc[   

 

Let  f  have  n+1  derivative throughout an interval containing c. If x is any number 

in the interval that is different from c, then there is a number z between c and x such 

that: )x(R)x(P)x(f nn  ,where,  .)cx(
!)1n(

)z(f
)x(R 1n

)1n(

n







  

 

. 

 

 

Let  f(x) have derivatives of all orders throughout an interval containing c, and let  

)x(R n be the Taylor remainder of f at c. If  0)(lim 


xRn
n

  for every x in the 

 interval, then f(x) is represented by the Taylor series for f(x)  at  c. 
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Example  : 45 

Show that the Maclaurin series obtained in example (44) represents xsin  for every 

real number x. 

Solution 

In example (3), If n is a positive integer, then either 

 xcos)x(f )1n(           or             xsin)x(f )1n(   

Hence 1)z(f )1n(     for every number z and 

!)1n(

x
x

!)1n(

)z(f
)x(R

1n
1n

)1n(

n












 

,0)x(Rlim n
x




consequently  ,0)x(Rlim n
x




 and the Maclaurin series in example 

(45) represents  xsin   for every number x. 
§§§§§§§§§§§§ 

 

Example  : 46 

Show that the Maclaurin series obtained in example (2) represents xe  for every number x. 

Solution 

 For             xe)x(f  ,                 z)1n( e)z(f  ,   

We obtain,   1n
z

1n
)1n(

n x
!)1n(

e
x

!)1n(

)z(f
)x(R 







  

where z in a number between 0 and x. If  0 < x, then  xz ee     since the natural 

exponential function is increasing, and hence for every positive integer n, 

1n
z

n x
!)1n(

e
)x(R0 


  

,0
!)1n(

x
limex

!)1n(

e
lim

1n

n

x1n
z

n














 

and by Sandwich theorem Limit ,0)(lim 


xRn
x

 

If  0x  , then 0z and hence  .1ee 0z  . Consequently 

!)1n(

x
)x(R0

1n

n





 

and hence )x(R n  has the limit 0 as n . It follows that the power series representation for 

xe  is valid for all non-zero x. Finally, if  x  =  0, then the series reduces to   e = 1. 

§§§§§§§§§§§§ 
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Example  : 47 

Show that the function   












.0xif0

0xife)x(f

2x/1
 

does not have the Maclaurin series representation. 

Solution 

It is easy to prove that   0)0(f...)0('''f)0(''f)0('f )n(   for every 

positive integer  n.  If f(x) has a Maclaurin series representation, then it is given by : 

n2

n
)n(

2

x.
!n

0
...x.

!2

0
x00

x.
!n

)0(f
...x.

!2

)0(''f
x.)0('f)0(f)x(f





 

which implies that f(x) = 0  throughout an interval containing 0. However this contradicts the 

definition of  f. Consequently, f(x) does not have a Maclaurin series representation. 

§§§§§§§§§§§§ 
 

Example  : 48 

       Use the power series representation for xe  to find approximate value for  


5.0

0

3de xx  

Solution 

e
x
 = 1 + x + 

!2

2x
+ 

!3

3x
+…..   .  Replace  x  by  x

3
 to obtain, 

 e
–x3

 = 1 – x
3
 + 

!2

6x
– 

!3

9x
+…..  . Then 

  
5.0

0

3 xdxe ~ 













5.0

0

6
3 d

!2
1 x

x
x   ~ 

5.0

0

74

14!4 












xx
x  

                           ~ 0.5 – 
4

)5.0( 4

+
14

)5.0( 7

  ~  0.484933035 

§§§§§§§§§§§§ 

Example  : 49 

      Use the power series representation for xe  to find approximate value for 


1.0

0

x dxe
2

. 

Solution 

...
!n

x
...

!3

x

!2

x
x1e

n32
x   

      ...
!3!2

1
64

22

 xx
xe x  

      099667666.0
103

...
!2

1

1.0

0

531.0

0

4
2

1.0

0

2









 

 xx
xdx

x
xe x  

§§§§§§§§§§§§ 
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Example  : 50 

Find the Maclaurin series of the function xsin)x(f  , then evaluate, 
1.0

0

2sin dxx                                                                             

Solution 

 

!5/1a,1)0(f,xcos)x(f

0a,0)0(f,xsin)x(f

!3/1a,1)0('''f,xcos)x('''f

0a,0)0(''f,xsin)x(''f

!1/1a,1)0('f,xcos)x('f

0a,0)0(f,xsin)x(f

5
)5()5(

4
)4()4(

3

2

1

0













 

Then         ....
!5

x

!3

x

!1

x
xsin

53

        

00033333.0
1320

x

42

x

3

x
dx...

!5

x

!3

x

!1

x
dxxsin

1.0

0

11731.0

0

10621.0

0

2  












  

 

Example  : 51 

Find Maclaurin's series for  xcos ,  then  approximate      
5.0

0

2cos xdx  

Solution 

xcos)x(f,xsin)x('''f,xcos)x(''f,xsin)x('f,xcos)x(f )4(   

1)0(f,0)0('''f,1)0(''f,0)0('f,1)0(f )4(   

!4

1
a,0a,

!2

1
a,0a1a 43210 


  

Maclaurin series for cos x: cos x  =  1  –  
!2

2x
  + 

!4

4x
 + .…  .  

Replace  x  by  x
2
 to obtain Maclaurin series for cos x

2
  as 

  cos x2 = 1 – 
!2

4x
 +

!4

6x
+ ….       

Then,    
5.0

0

2dcos xx  ~ 













5.0

0

84

d
!4!2

1 x
xx

         ~ 

5.0

0

95

!4)9(!25
x



















xx
   

                               ~ 
















)24(9

)5.0(

10

)5.0(
5.0

95

  ~    0.49688  . 

§§§§§§§§§§§§ 



Chapter 4                                                                                                           Infinite series  

                                                                                                                          

   

 

 162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequently-Used  Maclaurin  Series 

...
!n

x
...

!3

x

!2

x
x1e

n32
x  ,

!n

x

0n

n






         1x  . 

...
!)1n2(

x
)1(...

!5

x

!3

x
xxsin

1n2
n

53







 









0n

1n2
n

!)1n2(

x
)1( . 

...
!)n2(

x
)1(...

!4

x

!2

x
xxcos

n2
n

42

   





0

2

!)2(
)1(

n

n
n

n

x
 






0n

nn32 x...x...xxx1
x1

1

 




0n

nnnn32 x)1(...x)1(...xxx1
x1

1
 

...
n

x
)1(...

3

x

2

x
x)x1(ln

n
1n

32

    






0n

n
1n

n

x
)1( , 11  x  

                                                                                            

...
1n2

x
)1(...

5

x

3

x
xxtan

1n2
1n

53
1 


















0n

1n2
1n

1n2

x
)1( , 1x   

Binomial   Series 

1x,x
k

n
)x1( k

0k

n  













   

where 1
0








n
 and  

!

)1(...)1(

k

knnn

k

n 








   for .1k  
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E x e r c i s e   ( 4– 6) 

(I) Find the Maclaurin series of the following functions

(1) xe)x(f  ,     (2)   x2e)x(f  ,   (3) x3e)x(f 

(4)   
3xe)x(f  , (5)   xsin)x(f  ,  (6) xcos)x(f  .

(7) x2sin)x(f  , (8)   x3cos)x(f  ,   (9) x2sinx)x(f   

(10) 2xcos)x(f        ,   (11)  xsin)x(f 2 ,    (12) xsin)x(f 1   

(II) Find the Maclaurin series of the following functions.

        (1) xe)x(f   ,    (2) xcos)x(f   ,  (3)  xtan)x(f 1 ,   (4)  xcos)x(f 1 .

 Then show that the Maclaurin series represents these functions for all real number x. 

(III) Find the Taylor series for the following functions at the indicated points

(1) 4/c;xsin)x(f     ,  and  at  6/c   

(2) 3/c;x2sin)x(f  ,  and  at  6/c   

(3) 3c;x/1)x(f  .     (4) 1c;x/1)x(f 2  .      

(5) 3/c;xcos)x(f  .  (6) 6/c;x3cos)x(f  .                            

(7) 2c;e)x(f x    (8) 1c;e)x(f x2  

(9) 1c;ex)x(f x    (10) 3/2c;xcsc)x(f    

(11) 4/c;xtan)x(f  (12) 3/c;xsin)x(f 1  

(IV) (a) Find the power series representation for 
x1

1
)x(f


 if:  






1

1)1()1(ln
n

n
n

n

x
x

(b) Use the series in part (a) to approximate  2.1ln 2.1ln  and  9.0ln   to three decimal

places  and compare the approximation with that obtained using a calculator.

(V) Use the first three non-zero terms of Maclaurin series for x1tan  to approximate the 

following,

(1) )1.0(tan 1   ,   (2)   )5.0(tan 1     ,   (3)  


1.0

0

21 dxxtan , (4)  


3.0

0

21tan dxx
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(VI) Use the first three non-zero terms of Maclaurin series to approximate the following, 

(1)  
5.0

0

2dcos xx       ,             (2)  
1.0

0

2dsin xx       ,             (3)  


5.0

0

x de
3

x   

  (4)   
2.0

0

2dtan xx        ,             (5)   


3/1

0
6

d
1

1
x

x
     ,         (6)   

2.0

0

41

1
xd

x
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1 

HIGHER TECHNOLOGICAL INSTITUTE 

Tenth Of Ramadan City 

Department Of Computer Science 

 Subject :(MTH002 ) model Exam1(midterm) 

Question 1: 

a- Find an equation of the parabola and the focus that satisfied the given condition

V(4,- 2) , directrix d: y = 5

b- Show that the following function
2( , ) cos2yf x y e x satisfy the two-dimensional 

Laplace equation: 

0
2

2

2

2











y

f

x

f

Question 2: 

a- For the curve

1- Find an equation of the tangent to the curve, when t = 0.

2- Find

b-Consider the following parametric curve:

Compute the arc length of this curve 

Question 3: 

a) Compute the area bounded by the curve

b)Show that
2( , ) (0, 0)

lim
x y

x

x y 
  does not exist. 

c)Describe and sketch the graph of the polar equations, r =
6

4 4cos
.

lovew
Inserted Text



2 

HIGHER TECHNOLOGICAL INSTITUTE 

Tenth Of Ramadan City 

Department Of Computer Science 

 Subject :(MTH002 ) model Exam2(midterm) 

Question 1 

a)Describe and sketch the conic sections:

b)Show that

2

2 4( , ) (0, 0)
lim

x y

x y

x y 
  does not exist 

Question 2 

a)Find the area of the surface generated by revolving of the curve C about x-axis:

b)Describe and sketch the graph of the polar equations, r =
cos4

6


.

Question3: 

a) Compute and sketch the area bounded by the curve

b) Find
u

z




  and   

v

z




  for the following function, 

2 2ln ; 5 , 2xz e y x u v y v u    

c)For the cardioid   3 3cosr      with    20  , find,

1- The slope of the tangent line at 6/  .

2-The points at which the tangent is horizontal or vertical.



3 

HIGHER TECHNOLOGICAL INSTITUTE 

Tenth Of Ramadan City 

Department Of Computer Science 

 Subject :(MTH002 ) Final Exam 

Answer of the following questions: 

[Q1] [10 marks] 

a) Discuss and sketch the graph of the equation 2 24 9 64 18 71 0x y x y     .      [4 marks] 

b) Determine whether the following series is converges or diverges    [6 marks] 

1) 

3 2

2
1

4

2 1n

n

n n







 
     2) 

3 1

2
1

2 n

n
n n





  3) 
 1

4 !

2 !

n

n

n

n







[Q2] [10 marks] 

a) Find the radius and interval of convergence of the power series
1

10

!

n n

n

x

n





      [6 marks] 

b) Find the tangent plane and normal line to the surface 2 2 22 0x xy y z    at point 

(1,1, 2)P .                                                                                                                     [4 marks]

marks]10 [ ]3Q[

a) Find the area of the region that is inside the cardioids 2 2sinr    and outside the circle

3r  . [4 marks]

b) Let C be the curve with parameterization: 2 34 ,  12x t y t t  

(i) Find the equations of the tangent and normal lines to C at 1t  .

(ii) For what values of t is the tangent line horizontal or vertical?  [6 

marks]

marks]10 [ ]4Q[

a) Find the three non-zero terms of Maclaurin series of 1( ) sinf x x  to approximate
1

1

0

sin x dx

 . [5 marks]

b) Find the Taylor series of 
1

( )f x
x

 at 3.c  [5 marks] 

marks]10 [ ]5Q[

a)Find
dy

dx
if  y f x  is determined implicitly by  3ln sinhxyy e x y   . [4 marks] 

b)Find all local maxima, local minima and the saddle points of the equation

  2 2, 3 2 6f x y x xy y y      [6 marks] 
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