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Chapter 1 Graphs Of
A Second Order Equations

CHAPTER 1

GENERAL FOrRM OF A GRAPH FOR
EQUATION OF SECOND ORDER ( INPLANE)

A brief study for geometric representation of second order algebraic equation of two
variables in xy-plane ( Cartesian coordinates ) introduced in this chapter .

First section deals with general form for equation of a circle in Cartesian coordinates
(xy-plane ) , and the next sections deals with equations of conic sections in general and special
forms also in xy-plane .

A second order algebraic equation of two variables in xy-plane has a general form :

Where at least one of the coefficient A, B, and C not equal zero.

The above formula can be firstly simplified by choosing B =0 to get the form

(1.0)

The coefficient of equation (1.0) play an important role in the graph shape ( circle ,
parabola , ellipse , hyperbola ) as discussed later , depends mainly on the values and the signs

of these coefficients .

Equation (1.1) is called the general second order equation form for graph.

The coefficient types and graphs can be summarized as follow:

If A=C=0 with same sign, then (6.0) represent a
™ circle
If A=C , then (6.0) represent a a conic section : with
** A=0or C=0 isaparabola.
** AzC=0 with same sign ellipse .
** Az0,Az0 with different sign hyperbola .

PSP

Now a brief study for each graph will be discussed according to the coefficient constants
A,C,D and E.
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I- Graph Of A Circle In Cartesian Coordinates

A Circle is a plane curve consisting of the set of all points at a given fixed distance (

called the radius ) from a given fixed point ( called the center ) . If r>0 is the radius and

(p,q) is the center , and if (x,Y) is arbitrary point on the circle ( see fig. 1.1) , then by using the

distance formula we can write the defining condition as :

Jx-p)2+(y-a)? =r
o T

(1.1)

Equation (1.1) represent equation of the circle in standard form of center (p,q) and

radius r (see fig 1.1).

If the center of the circle be (0,0) then equation (1.1) simplify to the form

(1.2)

Which represent the equation of a circle in its standard form has a center (0,0)and a
radius r (see fig.1.2) .

By squaring the terms on the left of (1.1) and re-arranging , this equation can be
written in the form :

(1.3)

YA

<y

o}
(0,0

fia (1.1) fia (1.2)
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NOTE:

By completing the square on the x and y terms , any equation of form (1.3) can be

written in the form (1.1) , therefore ; as a result of the fact the constant r? of (1.1) classify the
following :

** If : r2>0 (1.1) represent equation of a circle .
w* |f : 2 =0 (1.1) represent equation of a single point .
w* |f 2 <0 (1.1) represent the empty set

Example :1

Find the graph type represent the equation : 3x? +3y? —27=0 .
Solution:

The above equation can be re-written as x? + y2 =32 which apply the standard form

(1.2) ie.,

Represent a circle , as coefficient of x2 = coefficient y2

Has a center  (0,0) , as coefficient of x =0 , coefficient y=0

Has a radius r=3 , as the given equation can represented by : x2 + y2 =32

i.e. the graph represent a circle with center (0,0) and radius r=3 . ss

§88888588888

Example :2
Draw the graph of the equation : x? + y2 —-2X+4y-20=0.

Solution:
Y44

/1

Compare the given equation with

equation (1.2.a) we get that it represent

a circle with center (a,b) and radius r .

* To draw the graph , transform it to
the standard form (1.2.b) as follow :

x2+y2—2x+4y—20=0

Complete square roots will used as :

— (P =2x+D)+(y? +4y+4)-1-4-20=0

= (x—1)2 +(y+2)2 —52

which represent a circle with center (1,-2) and radius r=5 .

§88888588888
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ssssssss 1 ray Dy your self  ssssssss

Discus each of the following equation and draw the graph (if possible) :
1) 36(x% +y?)—24x +180y +193=0 , 2) 36(x? +y?) —24x +180y +229 =0

3) 36(x? +y?)—24x +180y +235=0 4 X2+y?+6x—4y+14=0

5) X=-5+440-6y—-y’

$E53$85$

I-1 Relative Position Of A Circle And Straight Line In Plane :

This section discuss the relative position of straight line with respect to a circle lies in its
same Cartesian plane .
This positions under discussion summarized in :

** Straight line intersect with the circle in two points .

** Straight line intersect with the circle in one point( Tangent line) .

** Straight line doesn't intersect with the circle any where .

Let C be acircle satisfy equation (1.0) with A=C=1 for simplicity of calculation
only,ie. : x2 +y2 +Dx+Ey+F=0
and let L beastraight line has the equation  L:ax+by+c=0

The relative position of the straight line can be discussed by determine the perpendicular
distance between circle center and a point lies on the straight line ( i.e. short distance between
two points ) . Let 0 be that distance , then there is three relative relations between I ( circle
radius ) and O ( the perpendicular distance ) summarized as: (§<r ,8=r ,8>r ) and we get

the three following possibility as in fig (3) :

52 <r2 82 =r2 o 82 >r2
C
C
| |
| |
L } |
' L
Intersect in twoL points Intersect in one point Doesn't intersect L
fig (1.3)
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1-2 Equation Of A Tangent And Equation Of Perpendicular Line:

The tangent equation to the circle at a circumference point M_(x.,y.) is:

(1.4)

(1.5)

Example :3
Find the equation of the tangent and the equation of the perpendicular line for the circle :

x?+y? +5x—6y—21=0 at the point M_(2,-1) .
Solution:

To find the required equations we must first calculate the center of the circle as

(p,q) :[_EZ)’_EJ and the tangent point M_(X,,y,)

By using the standard form (1..3) we find hat : the center point (p,q)=((-5/3),3) ,
and the tangent point M, (x,,y.)=M.(2-1) -
Then the equation of the tangent ( by using 1.4 ) is :
(xX=2)[2—-(-5/2)]+(y+D[-1-(3)]=0

= Sx-2-dy+D=0 = (-2-By+)=0

Then the tangent equationis: 9x—-8y—-26=0

In similar way
The equation of the perpendicular line ( by using 1.5) is :

(y+D[2—-(-5/2)]-(x-2).[-1-(3]=0
= %(y+1)+4(x—2):0 = 9y+D)+8(x-2)=0

Then the perpendicular line equationis: 9y+8x—-7=0
§88888588888

ssssssss 1 1Ay DY your self  ssssssss

Find the equation of the tangent and the equation of the perpendicular line for the circle :
x?+y?-25=0 at the point M_(3-4) .

§88888588888
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Example :4

Find the equation of the circle C has the two points A(-3,2)and B(L4) as end points of one
of its diagonals .
Solution:

To determine circle equation it must determine the center and the radius values. (See

fig.1.4) we find that :
center coordinate is the midpoint of the
diagonal ends calculate as

_(=3+1 _2+4) A(-3.2) e A(1L,4)
(p,q)—[ ) 2] (-13) 19 ALY

and the redius can be calculated as:

AB=2r = (xa —x1)2 +(y2 —y1)° fig. (1.4)

~Ja+3?+@-22 =20
andthen 2r=25 — r=4/5

Then the equation of the required circle is :  (x+1)%+(y—3)? =5

§88888588888

Example :5
Find the equation of the circle C has center (6,7)and has a tangent line 5x-12y-24=0 .

Solution:
Note

That the distance between the point (x,,y,) and

the straight line L:ax+by+c=0 calculated

" (6.7)
|
by S:M:r , then the radius of the :
a% +b? —
circle is ; r=5=|5(6)_12(7)_24|=E=6 L:5x-12y-24=0

JB)? +(-12)? 13

and the equation of the circle is: (x-6)? +(y—7)*=36.

§§8§88888888
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Example :6
Find the equation of the circle C has y-axis asits tangent line at the point (0,4) and

intersect 6 units from x-axis (see fig 1.5)

Solution:
The circle equation determined as the center and the radius determined , but in_that

case an information lag has occurred so , we use the general form of circle equation (1.3) :

x2+y? +Dx+Ey+F=0 and try to find the coefficient constants D, E, F as the point (0,4)

lie on circle circumference then it satisfy (1.3) ( note that x =0) we get :

In y- axis( x =0) then (1.3) leads to 1
y?+Ey+F=0 (1)
which represent equation of 2" order has two equal 0.4)

roots as it tang y-axis at (0,4) and has the form :

(y-42=0> y>-8y+16=0 @

(% .0) (x2,0)
Compare with equation (1) with (2) we get : fia. (1.5)

E=-8 and F=16
Then substitute by this value (1.3) we get :

x?+y® +Dx—8y+16=0 3)
To find the value of coefficient D , put y =0 in equation (3) to find the point of intersection of
a circle with x-axis , we get :
x?+Dx+16=0 (4)
Which represent also equation of 2™ order has two roots
_-D+yD?-64 L _-D- JD? ~64

Xj=——
! 2 2 2

But as the intersect length of x-axis (x, —xp)isequal to 6 {i.e. (xp —X1)=6},

then : (X,~%,)=—D?—64=6= D?-64=36 = D?=100 = D=+10 ,

and then , the circle standard form is : x? +y? +10x —8y +16 =0 , which represent the
standard form of the two circle :

(x£5)* +(y—4)*=25 .

§§8§8§888888
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I -3 Intersect Of Tow Circles In Plane:

If two intersect circles in plane with two different centers , then its equations has the

forms: — (FEEEEEE R
i Cpix?+y? +Dix+Eqy+FR =0 | (19)
i Cpix?+y? +Dox+Epy+Fp =0) i

" x2+y2 +DX+Ey+F =0

(x> +y? + DX+ E,y+F) - (x* +y* + DX +E)y+F) =0 (1.7)
Example :7
Discus the intersection of the two given circles formatted as follow :
Co:x?+y?—2x-4y+4=0
C,:x*+y” —10x -4y +20=0
Solution:
The given equation of the form (1.6) and transform to the equivalent system (1.7) as :
x2+y2—2x—4y+4=0 .
(X2 +y2 —10x -4y +20) — (X +y? —2x -4y +4) =0 ,

= 1)

Xx-2=0
and by solving system (1) we find that the two circles intersect
in two consides points M(2,2) i.e., two tangent circles at that point .

x° +y2—2x—4y+4:0}

§88888588888

Example :8
Discus the intersection of the two given circles formatted as follow :

Coix2+y*-2x=0
C,:x2+y?-2y=0

Solution:
- A

The given equation of the form (1.6) and transform to the equivalent system (1.7) as :

x2+y2—2x:0
(x2 +y2 —2y)—(x2 +y2 -2X)=0

2,2 _ oy —
X" +y 2X 0} @ M, (0,0 \/
X=Yy

and by solving system (1) we find that the two circles intersect in two different points
M, (0,0) and M, (1,2) .

M, (L1)

v

f—

§88888588888
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IMPORTANT RESULT

** For two intersected circles , and if its N
tangents at any point of intersection N/
are perpendicular , we say that the tow
circle are perpendicular and denoted by :
C, L C, , and according Physighrath theorem

L2 = rl2 + r22 , Where

we get that :

L =the distance between its centers .
r, =radius of the first circle .
ro =radius of the second circle .

§88888588888
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Exercise (1-1)
Circle

I- Select ( as soon as you look) the graph types for each of the following

equations :
1) 2x2—3x+2y2+2y=0 . 2) x2—2y2+x—5y+12=0.
3) y2 +2x+y=12 . 4) 3x? +12y% +12x+21=0 .
5) 3x+2y—5=0 . 6) 5x% —5y? +2x—10y =25 .

Il - Find the standard form for the circle C satisfy the following knowledge :
1) Passing through the origin (0,0) , x-axis is its diagonal with radius r =5,
2) Has a radius r =4, tangent to the two axis's and lies in 1% quadrant .
3) Passing through the three points M, (0,2) ; M, (1) ; M;(2,-2) .
4) Tang x-axis at a point (5,0) , and intersect 10 units of y-axis .

I1- Find the center and the radius of each of the following circle and draw the

graph for each one :
1) x2—6x+y2+4y=23 , 2) x2+y2+10x—4y+13:0.
3) (x+3)2 +x% =9

I11- Discuss the relative position for the graph : x2 —12x +y? —14y +49 =0

with respect to each of the following straight lines :
1) 5x-12y-37=0 , 2) bx-12y-24=0 ,

3) (x+3)2—x2 =9 .

IV- Find the equation for both the tangent line and the perpendicular line for

each of the following circles at the given point :

1) X2 +y2 +4y-12=0 ; (2,—3)
2) X2 +y2 -3x-8y+18=0 ; (0,9)
3) G +y2 +8Xx+2y+16=0 ; (-4,-2)
4) x%+y?-2x+y-1=0 : 1.1

§88888588888
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I1- Conic Sections

The classical Greeks — Archimedes , Apollonius and others — notes that when a plane

( not pass the cone vertex ) cut a cone the then arise graph is called the conic_sections or for

simply the conic .

NOTE:
** |f cutting plane perpendicular to the cone then arise graph is a circle .

** If cutting plane is not perpendicular to the cone then arise graph is a conic .

** Three types conics arise according to the intersect position between the cone and the

which called Parabola , Ellipse and Hyperbola .

In section 1-1 a detail discussion about the circle introduced , the next sections introduce

detailed information about conics .

The Conic_Sections
A general form of conic section fig. (1.6) is a plane curve arise from a moving point P

such that the ratio between its distance about fixed point F (called the focus of the conic) to
the distance about fixed straight line d ( called the directrix of the conic ) equal to fixed

value e (called the eccentricity )

ie., Ya
x is called the Conic Axis .

F is called the Conic Focus . N L e o — - —
D /’_—

V s called the Conic Vertex. ’

The straight line d is called the ,
Conic Directrix . v\ F

The straight line DD’ is called
the Perpendicular Focus cord

of the conic . d D'\

The ratio e =(FP/NP)is called
The eccentricity of the conic .

fig (6.6)

NOTE:
** Conic focus and conic vertex lies on conic axis .
** The perpendicular focus cord parallel to the conic directrix and both of them are

perpendicular to the conic axis but in different sides of a vertex and of same distance of it .

11
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The next shapes form the different intersection position between the plane and the cone ,

and also the different resulting graphs .

/

hyperbola ¥

I1-1 The Parabola :
(A=0 or C=0 in equation (1.0))
A parabola is a plane curve consisting of the set of all points P that are equally distance

from a given fixed point F ( the focus) and a given fixed line d (called the directrix ) , i.e. e=1

, as shown in fig.(1.7.0)

y
(\1\\ F(0,P) | P(x.Y)
V(0,0) P X
1
d - V="P
fig. (1.7.0) fig. (1.7.a)

To find a simple equation for this curve , we introduce the coordinate system as shown in

fig.(1.7.a), in which the focus is the point F(0,P), where p is a positive number ( represent the
distance between the focus and the vertex ) and the directrix is the line y =—p. If P(X,y) any

arbitrary point on the parabola , then by using distance formula the definition condition (as
e =1— the distance between the focus and the point equal to the distance between the point and

the dil‘eCtl’iX ) |e y \/(X—0)2 + (y_ p)2 — (y+ p)

distance between focus and point  distance between point and directrix

and by squaring and simplifying we get :

x% +y® —2py+p® =y? +2py+p° — (1.7.2)

12
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Equation (1.7.a) is therefore the equation of this particular parabola in standard form .

If we change the position of the parabola relative to the coordinate axes , we naturally
change its equation. Three other simple positions , each with corresponding equation are shown

in fig. (1.9)

fig. (1.7.b) fig (1.7.) fig (1.7.d)

Next section give a general standard form of parabola in the xy-plane with a vertex

V(a,b)instead of VV(0,0) without proofs , but to prove this forms it is easy by applying the

same previous procedures used in calculated equation (1.7)

NOTE:
The value 4p represent__the perpendicular cord length General Standard Form For

Parabolic Equations :

(Parabola with vertex V(a, R) instead of VV(0,0))

b
(a.b), b)

v

fig. (1.8.a) fig (1.8.b)

13
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>

fig. (1.8.c) fig (1.8.d)

Example :9
Discus and draw the graph of the equation y? =8x, and deduce all of its available

.information Y,

Solution:

Compare the given equation with this F(p,0)

given with fig.(6.7.d ) we get that : A X
K

* The conic axes is x-axis ( the variable
of 1% order ) and open right ( refer to the

+ vesign of the equation ) .
* Focus F(p,0) = F(2,0) {as
dp=8->p=2}
* Vertex V(a,b) =V(0,0) {as (ab)=(00)}
d:x=-2

* Perpendicular cord equation L:x =2 and Perpendicular cord length 4p=8

§88888588888
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NOTE JUST FOR REMEMBER:

** The conic axes (axis of symmetry ) is the axis has the variable of 1% order .

** The conic direction ( open ) refer to the equation sign (+ vesign for right or up but —vesign
for left or down ) .

** Focus lies inside the cone and on the axis of symmetry and of a distance p from the vertex .

** Vertex lies on the axis of symmetry ( conic axis ).

** Directrix d perpendicular to the axis of symmetry and of a distance p from in opposite

direction of the focus .

** Perpendicular cord L perpendicular to the axis of symmetry , of a distance p from the
vertex , passing thought the focus F and of length 4p.
8888588588888
Example :10
Discus and draw the graph of the equation y? —4y —4x +16 =0, and deduce all of its

available .information .

Solution Ya
y/
Modify the given equation by using A
complete square as follows: : /
|
X
y? —4y —4x+16=0 V 3,2): F(4,2)
B T o | Y e »
= (Y -4y+4)-4x+16-4=0 R
= (y-2)? =4x-12 : \
= (y-2P=4x-3 ** i
|

Compared ** with equation (1.8.b) to get the following information:

/

* The conic axes is x' -axis ( parallel to x-axis , corresponding to the variable of 1% order )

and open right ( refer to the + vesign of the equation )
*Vertex V(a,b) =V(3,2)
* Focus F(p,q) =F(@+p,b)=F(4,2) (as 4p=4->p=1)
* Directrix equation d:x=2 {as: x=-a+p = x=-1+3 = x=2}.
* Perpendicular cord equation L:x=4 {as: x=a+p = x=1+3 = x=4} and

Perpendicular cord length 4p=4.

§§8§8§888888
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Example :11
Discus and draw the graph of the equation x? +4x +4y+16 =0, and deduce all of its

available .information .
Solution:
Modify the given equation by using
complete square as follows:

= X% +4x+4y+16=0

— (X2 +4x+4)+4y+16-4=0

= (X+2)2=-4y-12

(x+2)% =—4(y+3) **

Compared ** with equation (1.8.c) to get the following information :

* The conic axes is y/ —as ( parallel to y-axis , corresponding to the variable of 1% order)and
open down (refer to the — vesign of the equation )

* Vertex V(a,b) =V(-2,-3)

* Focus F(p,q) =F(a,q+b) =F(-2-3-1) =F(-2,-4) {as 4p=4>p=1}

* Directrix equation d:y=-2 {as: y=-a+q = y=—(-1)-3 = y=-2}.

* Perpendicular cord equation L:y=-4 {as: y=a+q =y=-1+(-3) =2 y=-4}
and Perpendicular cord length 4p=4.

§88888588888

Example :12
Deduce the standard equation of the parabola that has a vertex V(—4,2) and has a directrix is

the equation y =5 and then draw the graph represent this parabola .

Solution :

In such problem it is more convenient (prefer) to represent the given information as a draft

on the coordinate axes at first , and then compare with the suitable form of equation (1.8)

** Directrix equation y=5 , i.e., represent a straight line parallel to x-axis

and of a distance equal 5 from it .
** Directrix is perpendicular to conic axis, then , y-axis is the conic axis .

** As the vertex V(—4,2) and the directrix lies in opposite side of the focus ,

16
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Then from figure geometry the parabola open down . /

Y y

Then by comparing the given information and the deducing ? 1
I
|
I

results , its clear that the figure coincide with equation (1.8.c)

figure coincide with equation (1.8.c) .

So the standard equation form is :
(x—a)* =—4p(y—b) ,

ie. (x+4)? =-12(y—2)

with (a,b) = (—4,2) { vertex coordinates }. and p=3 { the distance between the vertex and the

directrix }and the perpendicular cord length is 4p=12 .

§88888588888

Example :13
Deduce the standard equation of the parabola that has a Focus F(2,0) and its directrix has

the equation x =-2 and then draw the graph represent this parabola .

Solution :
As in example 12 it is more convenient (prefer) to represent the given information as a

draft on the coordinate axes at first , and then compare with the suitable form of equation (1.8)

** Directrix equation x=-2 , i.e., represent a straight line parallel to y-axis

and of a distance equal 2 from it .
** Directrix is perpendicular to conic axis, then , x-axis is the conic axis .

** As the vertex F(2,0) and the directrix lies in opposite side of the focus,

then from figure geometry the parabola open right .
y A

Then by comparing the given information |

and the deducing results , its clear that the ;
figure coincide with equation (1.7.d) . /:/-

v

So the standard equation form is : !F(Z,O)
I
y? = 4px |
le. y? =8x :
. . d:x=-2 _
with vertex coordinates O(0,0) L:ix=2

and p=2 (distance between the focus and the vertex ) , so

and the perpendicular cord length is 4p=8 .
§88888588888
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Exercise (1-2)
Parabola

I- Discus and draw the graph of each of the following equation :
1)- 8x? =y , 2)- y=x?—4x+2 ,3)- y?-12=12x
4)- 2x% =8y . 5)- (x=3)2=16(y-2) ,6)- (y+2)®=-20(x+2)

7)- 12y% =—48x , 8)- (x+4)*=-12(y-2) ,9)- (y-2)2 =4(x-3)
888888588888

I1- Deduce the standard equation form for each of the parabola :

1)- Has a vertex V(3,-5) and directrix equation x =2 .
2)- Has a Focus F(0,—4) and directrix equation y =4 .
3)- Has a vertex V(1,—2) and a Focus F(1,0) .

4)- Has a vertex V/(3,3) and directrix equation y=2.
5)- Has a Focus F(2,4) and directrix equation x =-1 .

6)- Has a vertex V(-1,0) and a Focus F(—4,0) .
7)- Has a Focus F(5,3) and directrix equation y=-1 .
8)- Has a vertex V(2,2) and a Focus F(3,2) .

§88888588888

I11- Deduce the standard equation form for the parabola with symmetric axis parallel to y-axis ,

and passing thought the points (2,1), (1,2) and (-1,-2) , then draw the graph represent this

parabola .

§88888588888
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11-2 The Ellipse :
(A #0#C inequation (1.0))

An ellipse is the locus of a point P that moves in such a way that the sum of its distance

from two fixed points F and F/ constant as shown in fig. (1.9.0) (i.e. FP+F/P=2a)

F-> ¢ 4-- F

:/
] __> a 4--
fig. (1.9.0) fig. (1.9.00)

A several standard notions for the dimension of the ellipse will introduced now I fig.
(1.9.00).

** The two points F and F are called the foci ( plural of focus) of the ellipse .

** The curve of symmetry AA/ =2a is called the major axis of the ellipse ,
passing through the foci and (a) is called the semi-major axis .

**  The perpendicular bisector of the line segment FF' the segment BB/ =2b
is called the minor axis of the ellipse (b) is called the semi-minor axis

** The two points A and Alat the end of the major axis are called the
vertices of the ellipse .

** The distance between the foci is equal to 2c

** If the major axis coincide with x-axis , the point 0(0,0) iscalled the

of the ellipse . and then the coordinates of the major points of the ellipse
are corresponding to A(a,0) ,A/ (-a,0), B(0,b), B/ (0,-b), F(c,0) and F/ (-c,0).

From fig. (1.9.a) its clear that : a? =b? +c? ( Physaghorth theorem ) M

and itiseasytoseethat: b<a .
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** The ration c/a is called the eccentricity of the ellipse and is denoted by :

(1.9.0)

and notice that: O<e<1.
To simplify the equation of the ellipse , and as we take x-axis as major axis fig.(1.9.a)

and from fig.(1.9.0) it is clear that : FP+F/P=2a and as the given coordinates point are

P(x,y), F(c,0)and F/ (c,0) then use the distance rule between two points then

w/(x—c)2+y2 + w/(x+c)2+y2 =2a (i)
PF

/
PF
To simplify equation (ii) , follow the usual procedure for eliminating radicals , as :

w/(x+c)2 +y2 :2a—\/(x—c)2 +y2

By squaring both side and simplify we get :

PF=1/(x—-c)2 +y? :a—gx (iii)

And from (iii) and the relation F'P=2a—FP we get:

PF=(x+c)2 +y2 —a+Zx (iv)
a

By squaring again and simplify either of equation (iii) or (iv) we get :

2 2 2 2
[qu2+y2:a2—c2 or X, Y 1,

a2 a2 a2 —C2

Finally by putting the above equation in its final form we get :

(1.9)

Equation (1.9.a) represent the standard form for the equation of the ellipse shown as in
fig.(1.9.a) specially as considered that a > b .
NOTE
Equation (1.9.a) : i+y_2 —1 with unequal denominators represents the equation of
()* O)?
an ellipse and the equation whether the foci and major axis lies on x-axis or the y-axis which is

determined by which denominator is large as shown in the following figures .
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<
&/
<
¥
n
X ¥

v/

fig. (1.9.b)

The Ellipse of a Center o/(p,q):
Here we discus ( without proof ) the standard form of the equation of ellipse which has a

center o’ (p,q) ( transform of coordinates ) and its standard figures as follows :

A A
1
y :
1
I
|
F!
|
1
_————bkd - - - | »
Ol x/
, F! S
, >
W
1
1 X
|
1
fig. (1.10.b)
i b>a ;
Major axis x/ parallel to x-axis . #1 b Major axis y/ parallel to y-axis .
Minor axis y/ parallel to y-axis . 1 B2 Minor axis x/ parallel to x-axis .
Foci F(c+p,g) and F/(-c+p,q) . ] F Foci F(p,c+q) and F/(p,—c+q) :
Vertices V@@+p,q)and V/(-a+p,a) ] £ Vertices V(p,b+g)and V/ (p-b+q)

(1.10)
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Example :14
Discus and draw the graph of the equation 4x? + 9y =36, and deduce all of its available
.information .

Its clear that the equation represent equation of simple ellipse as :

** coefficient of x? and coefficient of y2 are exits and different and of same
sign(i.e., A=C=0). y

** has a center O(0,0) as doesn't contain X or y. B(0,2)

Now we put the equation in its standard form as : K“\
v/ (-3.6) / . V(3,0)
2 oy? P50 F(/5.0)
= +—=1

A

4x* +9y* =36 — =
36 36
2 2 I
=~ XY 0 502
9 4

Compare the last equation (i) with the standard For ,f and fig.(1.9.a) we get :

“*a2=9 »a=3 and b>=4 >b=2
**a>b — Xx-axisisthe major axis with 2a =6 , and

y-axis is the minor axis with 2b =4,

** Vertices are V(3,0) and v/ (-3,0) .
** Foci are F(+v5,0) and F/(-/5,0) .
As: c?=a’-b?—>c?=9-5=5-c=+5

§88888588888

Example :15
Deduce the standard equation of the ellipse that has two Foci (+2,0) and two vertices

(34,0) and has origin O(0,0) as its center .

Solution :
From the given information as has a center O(0,0) then :
. . x?% y? .
** The proposed equation form is: 2z + oz =1 (i)

** x-axis is the major axis ( vertices locations ) .

** the major axis length is 2a =8 (i.e. »>a=4).
(the distance between the two vertices are V/(4,0) and V/ (-4,0))

** ¢ =2 thetwo fociare F(2,0) and F’'(-2,0)
** h2 12 as: c?=a’-b% 54=16-b°> —b%=12
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** the minor axis length is 2b = 443 (ie. »>a=4).
Then refer to equation (i) with deduced information we can formulate the ellipse standard

equation as:
2 2
L S Y %3(0,2V/3)
16 12
V/(-4,0)
F(20) V(Z,O)
B/ (0,-2v3)
§888588588888

Example :16

Discus the graph of the equation 16x? +9y? +64x —18y —71=0, draw the graph and

deduce all of its available .information .

Solution:

Its clear that the equation represent equation of general ellipse with vertices o/ (p,q)

as.

** coefficient of x? and coefficient of y2 are exits and different and
of same sign (i.e., A=C=0).

** has a center O/ (p,q) as coefficient of x andy both exist .

** The proposed equation formis; X ;Zp)z L& ;2Q)2 —1 (i)
To get the required equation we modify the given equation as follows :
16x° +9y? +64x —18y —71=0 = 16(x? +4x)+9(y> —2y)—71=0
By complete square we get :

= 16(X%+4x+4)+9(y> —2y+1)—64-9-71=0
= 16(x+2)% +9(y-1)% =144

2 2 2 2
16(x+2)°  9(y-D° _, _ (x+2° (y-9° _, |,
144 144 9 16

Compare equation ** with the standard form (1.10) and fig.(1.10.b) It clear that :

** ellipse center is (p,q) =(-2)

** y/ -axis is the major axis of the ellipse (as:b?=16—>b=4 and .( a2=9-a=3)
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** the major axis length is 2b =8.

** the minor axis length is 2a =6.

** the two foci are :
F(p,q+c)=F(-21++7) and F'(p,q—c)=F (-21-+/7)

(as: c?=a?-b? = ¢?=16-9=7 = c=+/7 )
** the two vertices are  V(p,q+b)=V(-21+4)
and V/(p,q-b)=V/(-21-4)

ie. V(=25 , V/(-2-3)

§88888588888
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Exercise (1-3)
Ellipses

I- Discus the graphs of each of the following equations , draw the graph and deduce all of its

available .information .

1 XY SN G N GNP C o SN A Y
25 16 49 25 9 36
X2 (y+2)? 2 2 2 2

4)—75Jr 5 =1 y 5)- 9x“+25y° =225 , 6)- x“+2y°+2x—20y=0
1 4

7)- Ox? +4y? —54x+16y+61=0 , 8)- 4x?+9y? —32x —36y+64=0

9)- 9x? +16y? +54x-32y—47=0 , 10)- 4x* +9y? +24x+18y+9=0

I1- Deduce the standard equation of the ellipse that has the following information and
Deduce all available other unmentioned ellipse information
1)- Two foci (0,+2) and two vertices (0,£7) center (0,0).
2)- Two foci (£5,0) and two vertices (£8,0) .
3)- Two foci (£3,0) and minor length axis equal 2 .
4)- One of its focus (0,2) and major length axis equal 10 .
5)- Center (2,2) one of its focus (—1,2) and major length axis equal 2410 .
6)- Two Foci (2,5) , (—4,5) and minor length axis equal 8 .

7)- Center (3,—3) , major axis parallel to x-axis and major length axis equal 20 and

minorlength axis equal 16 .
8)- Two vertices (0,£6) and pass thought the point (3,2).

9)- Pass through the two points (3,2) and (6,1) .

10)- Minor axis ends are (2,) , (2,—7) and the distance between its foci 1.

§88888588888
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11-3 The Hyperbola :

(A #0=C inequation and in different sign in (1.0))

A hyperbola is the locus of a point P that moves in such a way that the difference of its

distance from two fixed points Fand F/ (called the foci )is constant .
If this constant is denoted by 2a, with a>0 , then a little though will show the locus
consists of two branches as shown in Fig.(1.11.a) , where :

** The right branch is the locus of the equation : PF —PF=2a ; and

** The left branch is the locus of the equation : PF— PF/ =+2a . @
** The defining condition for the complete hyperbola can be therefore be
written as : PF/ —PF=142a . y

To find a simple equation for the hyperbola

, take the x-axis along the segment FF' and the y-
axis as the perpendicular bisector of this segment .

If 2c denotes the distance between F and F/ ,
then F=(c,0) and F/=(—C,O) as shown in
Fig.(1.11) and (1) becomes PF-— PF/ = +2a

— \/(x +C)2 + y2 _\/(x—c)2 +y2 =+2a fig.(1.11.a)

By moving the second radial to the right side , squaring , and simplifying , we obtain the

local radius formulas

= PF=4/(x-c)% +y? :J_r(:x—aj (2)
= PF/ =\/(x+c)2 +y2 =i(;x+aj 3)

where (3) follow from (2) because PF/ =+2a+PF . As in (1) , the plus signs here

and

correspond to the right branch of the curve , and the minus sign to the left branch .By squaring

and simplifying , either of this equations gives

c? -a” 2 2 _ .2 .2 2 .2 2
X —y“=c“-a ; then put (c“—a“)=Db

a2

we get : (1.11.a)

which represent the standard form of the equation of the hyperbola shown in Fig. (1.11)
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Now another form of equation (1.11.1) can be evaluated if we replace the coefficient

signs of both x2 and y2 which can be represents in its standard form as :

(1.11.b)

and its graph seen like we rotate Fig. (1.11.a) by 90° to be as in Fig. (1.11.b) bellow :

Now we turn to a careful consideration of the
hyperbola shown in Fig.(6.11.a) on the nature of the
hyperbola it represents . Our discussion will reveal
additional features of the hyperbola that are not obvious

from the definition and that are indicated in greater

A

(

L o F(0,¢)

detail in Fig. (6.11.c)

v

fig.(1.11.b)

where :
** its clear in that case the eccentricity e >1, and as in ellipse case e=(c/a).

** y=+(b/a)x areastraight lines called the right and left asymptotes.
**  x-axis is the major axis and y-axis is conjugate axis .

** V(a,0) and v/ (=a,0) are the two vertices .
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NOTE
Just as in the case of ellipse , can easily write the equation of hyperbola with center (p,q) and

principal axis parallel to one of the coordinate axis .

The equations are :

Or i b2 2

(1.12.b)

Example :17
Discus the graph of the equation 9x? —4y? =36, draw the graph and deduce all of its

available .information .
Solution:
Its clear that the equation represent equation of hyperbola with x-axis as a major axis
(+vesign) and y-axis is the conjugate axis (—vesign) .
Equation must put in the hyperbola standard form as:

2 2 2 2 A y = (3/2)x
9L_4L:1 = X__y_:]_ + y=—(3/2)x .
36 36 4 9 N

compare the given equation with
the standard form (1.11.a) we get :
** a=2 ,b=3
** Vertices : V(2,0) , V/ (~2,0)
** Asymptotes @ y=+(3/2)x ,
** Foci : F(+v/13,0),F/ (-//13,0)

as: c2:a2+b2=4+9=13

v

§88888588888

Example :18
Discus the graph of the equation 9y2 —4x? =36, draw the graph and deduce all of its

available .information .
Solution:

Its clear that the equation represent equation of hyperbola_with y-axis as a major axis
(+ vesign) and x-axis is the conjugate axis (—vesign) .

Equation must put in the hyperbola standard form as:
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9y2 42 9 y2 52 B
ENEREE =@y
. ) . \ y =(3/2)x
compare the given equation with \ . ’
\ /
the standard form (1.11.a) we get : VAN //
** 3=3  b=2 NS
\
** Vertices: V(0,2) , v/ (0,-2) Vi p '\ >
** Asymptotes @ y=+(3/2)x , ’ \\
/
*% Foci : F(0,413),F (0,-13) y F,\
as: c?=a?+b? =4+9=13 . o\
8888588588888 /
Example :19

Discus the graph of the equation 9x? —4y? —54x —16y +29 =0, draw the graph and deduce

all of its available .information .
Solution:

Its clear that the equation represent equation of hyperbola with x/ (parallel to x-axis) as
a major axis (+ vesign ) and y/ (parallel to y-axis) is the conjugate axis (—vesign ) and has
center (p,q) as contain ( x , y of 1% order).

Equation must put in the hyperbola standard form(1.12.a) as:

=  9x?—4y? —54x-16y+29=0
= (9x? -54x) - (4y? +16y) +29=0 y:—gx\
and by complete square

= 9(x2 —6x)—4(y2 +4y)+29=0

9(x? —6X +9) —4(y? + 4y +4)+29=0
Ox2 —4y? —54x 16y +29=0

9(x—3)% —4(y+2)? —81+16+29=0
9(x—3)% —4(y+2)? =36

(x-3)% (y+2)° _q{ wn

4 9
Compare the given equation with_the standard form (1.12.a) we get :

as a’=4—>a=2and b®*=9—-5b=3
** Hyperbola of a center (3,-2) .

** \fertices : V(3+2,-2) , V/(3-2-2) i.e. V(5-2) , V! (1-2)
** Foci F(3++13-2), F/(3-+v13,-2) (as:c? =a’ +b? = ¢? =9+5=13= ¢ =413 )
** Asymptotes : y==+(3/2)x.

Y4 vy

L

§§888§888888

29



Chapter 1 Graphs Of
A Second Order Equations

Example :20
Deduce the standard equation of the hyperbola that has a center O(0,0), vertices V(%3,0)

and pass through the point P(5,2) and find all available information .

Solution :
The vertex coordinates indicate that x-axis is the major axis , y-axis is the conjugate axis

2 2
and parabola has center O(0,0) , then has the standard form (1.11.a) X _Y_ _—q

aZ b?
**Tofind a and b N A
**V(#a,0) = (z30)= a=3 \\
And as the conic pass through the point :\-i- L - -/
P(5,2) then it verify its equation and so }/\ >
2 2
52 22 71N\
9 b2 N\
= bzzg:bZE,andthen: // N
4 2
X2 y2
** The standard form of the conic is : — =1
9 (9/74)
% Foci F(%JE,O) F (—gﬁ,o)
(as: ¢® =a® +b® > c® =9+ (9/4) = (45/4) _>c=g\/§ )
1
** Asymptotes : y=+*—X = y= J_rEx .

§88888588888
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Exercise (1-4)
Hyperbola

I- Discus the graph of the following equations ,draw that graphs and deduce all
of its available .information .

1) 4x*—25y% =100 ,2) 4x*—9y? —32x—36y—-8=0
3) 9x%—25y% =225 4 4x%—y? +32x-8y+49=0
5) 4y® -16x>-64=0 ,6) 25x% —16y? +250x +32y +109 =0
2 2
7) 25x% —9y? +100x —54y +10=0 c g W+t (x+2)
49 16
2 2
9) 9y? —x?+12x—36y—36=0. , 10) X=3°_=4"
9 36
11) 25x* —9y? +100x —54y +10=0 , 12) 0(194)2—3;;:1

I1- Deduce the standard equation of each of the following hyperbola that has the given

information

1) Center O(0,0), vertices V(0,£1) and foci F(0,14).
2) Center O(0,0), vertices V(£5,0) and foci F(£8,0).
3) Center O(0,0), vertices V(£3,0) and pass through the point P(8,2).

4) Center O(0,0), vertices (+3,0) and asymptotes y =+2x .

=

5) Center O(0,0), foci (0,£10) and asymptotes y=+=x .

w

6) Center O(0,0), vertices (£2,0) and foci (£6,0).
7) Center O(0,0), foci (£5,0) and the distance between vertices 2a =8,

8) Center O(2,—4), one of its focus (7,—4) and the distance between vertices 2a =8.

§§8§88888888
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CHAPTER 2

PARAMETRIC EQUATIONS

AND POLAR COORDINATES

I-PARAMETRIC EOQUATIONS

I-1 Parametric Equations

When the path of a point moving in the plane looks like the
curve in Fig. (2.1), we cannot hope to describe it with a Cartesian
formula that expresses y directly in terms of x or x directly in
terms of y. Instead, we express each points coordinates as a |

function of time t

and describe the path with a pair of equations
x=1(t), y=9(t). Fig. (2.1)

Definition : 1

A plane curve is a set C of ordered pairs (f(t), g(t)) where f and g are i~

i continuous functions on an interval 1.

The graphs of several curves are sketched in Fig. (2.2), where 1 is a closed interval

[a, b]. In (i) P(a) = P(b), and P(a) and P(b) are called the end points of C. The curve in (i)
intersects itself; that is, two different values of t produce the same point. If P(a) = P(b), as in
(ii), then C is closed curve. If P(a) = P(b) and C does not intersect it self at any other point,

as in (iii), then C is a simple closed curve.

; y Ay
AY (a) Curve 4 (b) Closed Curve (c) Simple Closed Curve

P(a)
P(a) = P(b)

P(a) = P(b)

P(1)
D¢ Y)(f)
P(b) P ’

xY
HW

Fig. (2.2)
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Definition : 2

Let C be the curve consisting of all ordered pairs (f (1), g(t)) where f and
i g are continuous functions on an interval I . The equations x =f(t), y=g(t)

~i for t e | are parametric equations for the curve C with parameter t.

Example :1
Sketch the graph of the curve C that has the parameterization :

X = 2t, y:tz—l; -1<t<2

Solution:

t | 1 |12 0 J12] 1 [32] 2
x | 2| 1] 0 | 1| 2| 3 | 4
y | 0 | 34| -1 | 34| 0 |54 3

The arrowheads on the graph indicate the direction in which P(Xx, y) traces the curve

Cast increases from -1to 2. [see Fig. (2.3)].

By eliminating the parameter t, we obtain the equation in Cartesian form as,

The graph of the curve C is that part of the parabola
(symmetric about the y-axis with vertex at (0, 1)) between
the points (-2, 0) and (4, 3). The orientation of the

parameterized curve C is the direction determined by
increasing values of the parameter. This orientation is Fig. (2.3)

indicated by arrowheads on C.

§88588888888
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Example :2

A point moves in a plane such that its position P(x, y) at time t is given by:
X =a cost, y =asint; teR,
where a > 0. Describe the motion of the point.

Solution :

w
S
ol
S
w
S
\‘
3

T
2 2

&
3
N

|
Q
|

QD
514

o
Sl

[o}]

<
.

SRS ERSE
o

SRS
o
!
Nl o
!
QD
51 %
o

[See Fig. (2.4)]. We may eliminate the parameter by

LY

rewriting the parametric equation as,

X .
— = cost, X: sint ,

; y
a a Ag.;))

A
C//
0o X
and using the identity cos®t + sin’t =1, to obtain, \\j
x> + y*> = a®, which is a circle C of radius a with

center at the origin as shown.

P(x, y)

a

Fig. (2.4)
§88858858888
Example :3
Sketch the graph of the curve C that has the parameterization:
X=-2+ t?, y:1+2t2; teR
and indicate the orientation.
Solution :
t (3(-2]-1]01|1]|2]|3
x |72 |-1}|-2]|-1]2]3
y 1919 (3|1 |39 /|19
AY
/I
/
Hy —1=2x+2)
b i
// o =
(-2,1) f i
i 1 /I } } 1 s
—_— }/1 T T T x

Fig. (2.5)
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By eliminating the parameter t, we obtain the equation in Cartesian formas: y =2x + 5
Itis an equation of the line of slope 2 through the point (-2, 1) as shown.
Since t2 >0, thus the graph of C is that part of the line to the right of the point (-2, 1)

(which corresponding to the value t = 0.)

The orientation is indicated by the arrows alongside of C. As t increases in the

interval (—oo, 0], the point P(x, y) moves down the curve toward the point (-2, 1).

As tincreases in [0, ), the point P(x, y) moves up the curve away from the point (-2, 1).

8888888588888

Example :4
Find three parameterizations for the line of slope m through the point (x4, y;)

Solution :
By the point-slope form, an equation for the lineis: y —y; = m(X — Xq).
let : x=t, then y—-y;, =m(t-xq), and we obtain the parameterization,

X =1, y=y; +m(t-x%;);, teR.
We obtain another parameterization for the line if we let, x —x; =t.

In this case, y — y; = mt, and we obtain the parameterization,
X =X + ft, y =Yy; + mt; t eR.
For third parameterization, let x — x, =tant, then y —y; =m tant, and we obtain the

parameterization,

X = X, + tant, y =y, + m tant; —g<t<g.

We can find many other parameterizations for the line .

§88888888888
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Example :5
A computer-generated graph of the figure :

X =sin2t, y=cost; 0<t<2rn
is shown in Fig. (2.6), with the arrowheads indicating the orientation. Verify the orientation ,
and find an equation in x and y for the curve.

Solution:
o | T E ¥ A L L I
' 7 T R L R N B
x| 0| 1] 0| -1] 0| 1] O0]|-1]0
1 -1 -1 1
y| 1 | V2] 0 | V2| 1|2 ]| 0 |21

As tincreases from 0 to nt/2, the point P(x, y) starts
at (0,1) and traces the part of the curve in quadrant | in
clockwise direction. As t increases from n/2 to «t, the point

P(X, y)traces the part in quadrant 111 in a counterclockwise

direction.

For =<t <3n/2, we obtain the part in quadrant 1V,

and 3n/2 <t < 2 gives us the part in quadrant 11. <
Fig. (2.6)

Now, X =sin2t =2sint cost .

Then,

x? =4sin®t cos’t =4 (1—cos’t) cos’t =4 (1 - y?)y?

or

4y4—4y2+x2:0

4+ 416 —16x%>  1+41- x?
2

Solving fory: y? = =

8
1+ 41— %2
y= N

These complicated equations should indicate the advantage of expressing the curve in
parametric form.

§58888888888
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Example :6
The curve traced by a fixed point P on the circumference of a circle as the circle rolls along a

line in a plane is called a Cycloid. Find parametric equations for a cycloid and determine the
intervals on which it is smooth.

Solution :

T)\ T Ra ) - 2%a {
Fig. (2.7)

Let K denotes the center of the circle and T the point of tangency with the x-axis. Let
t be the radian angle TKP. Thus the distance fromOto T is d(O,T) =at

Kis (at, a). Translate the axes to K (at, a), then

X =at + X', y=a+y, 6:3?%—t.
Since 0+t +g = 2mn, from the graph, we get:

X'=acos0 = acos(e%E - tj = —asint

y'=asinf = asin(%E - tj = —acost,

then, X =a(t —sint), y =a(l — cost); teR

d_X=a(1—cost), ?j—)t/:asint

dt

these derivatives are continuous for every t, but are simultaneously 0 at t = 2nz for every

integer n. Then the cycloid is smooth in the interval [2n7z, 2(n+1) z] for every integer n.

§88888888888
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Example :7
Sketch the graph of the curve C that has the parameterization:

x =cos’t, y=sin’t, 0<t<2n

This curve is called the Asteroid

Solution:
o | X || 3 om st I,
t 4 2 4 n 4 2 4 m
X _1 —1 —_1/2/2 _1
1 22 0 22 -1 V2 0 22 1
Y 21 _1 -1 —1
0 242 1 242 0 22 -1 242 0
y
1
\ XxX=cos't
SN, ¥y=sint
A W= ¢ = 2
SN
_ — » X
-1 0 1
‘x""x ) --___.-
i .'lllr-.-.
1L
Fig. (2.8)

§88888888888
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Exercise (2-1)

() Find an equation in x and y whose graph contains the points on the curve C. Sketch the

graph of C.

@D x=t -2,
(2) x=1- 2t,
() x =e',

(4) x=¢",

(5) x = sect,
(6) x = cos2t,
(7) x = 3cosht,
(8) x = cosht,

©) x=(t +1°,
(20) x = cost,

y=2t+3;
y=t+1,
y=e2t:
y=e";
y = tant ;
y =sint ;
y = 2sinht;
y = sinht;
y=(t+27%
y =sint;

teR

(1) Showthat: x=acost+h, y=bsint+h; 0<t<2m are parametric equations of an

ellipse with center (h, k), and axes of lengths 2aand 2b.

§88588858888
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-2 Derivatives , Arc Length And Surface Area

From the previous course "Math A", If a curve is described by an equation y = f(x),

where f is a differentiable function, we know how to find the slope of a tangent line at a point
on the curve, the length of the curve, and the area of the surface of revolution obtained by
revolving the curve about an axis. In this section, we discuss how to find these quantities
when the curve is described by parametric equations.

Theorem : 1

If a smooth curve C is given parametrically by x = f(t), y = g(t), then the

- slope of the tangent line to C at P(x, y) is: dy _ dy/at provided x 0.
: dx dx/dt dt
Example :8
Find the equation of tangent to the curve,, X =sect, Yy =tant; _—zn <t< g

at the point (\/5 1), where t= n/4
Solution :

dy _ dy/dt _ sec’ t sect

dx dx/dt secttant tant’
_sec(n/4) N2

t=n/4 tant (nc/4) 1

The equation of tangentis: y—1=+2((x-+2) or y=+2x-1

§88588858888

The slope of the curve at t is

dy

at t= n/4,
dx

Example :9
Let C be the curve with parameterization:
X=2t, y=t>-1 -1<t<2.

Find the equations of the tangent and normal linesto Cat t =1.

Solution :
d_y _dy/dt 2t

dx dx/dt 2

The slope of the tangent line to C at t =1, m; =1, and the slope of the normal line to C at

t =1, m, = —1. The point correspondingto t =1 is P(2, 0)

equation of tangent line: y=x —2 and equation of normal line: y=—-x+2 .

§885888888888
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Example :10
Let C be the curve with parameterization,
x=1t3-3t, y=t>-5t—-1 teWR.
a) Find an equation of the tangent line to C at the point correspondingto t = 2.
b) For what values of t is the tangent line horizontal or vertical ?
Solution :
a) Using the parametric equations for C, we find that the point correspondingto t = 2

dy dy/dt 2t-5

is: P2, -7). =
( ) dx dx/dt 3t2_-3

the slope m of the tangent line at (2,-7) is: m= th_ > ] __ 1
3t° -3
t=2

The equation of the tangent line is :

y+7=—é(x—2) or X+9y+61=0.

b) The tangent is horizontal if : dy = 2t =5 =0, ie 2t-5=0, or t:E.
dx 3t -3 2
The corresponding point on C is (% %}
The tangent is vertical if: dy = 2t=5 o, ie3t3-3=0, or t= 1.
—  dx  3t?-3

The corresponding points on C are (-2, —5), (2,5).
§88858888888
Theorem : 2

: If a smooth curve C is given parametrically by x =f(t), y=g(t), and if y' ..
is differentiable function of t then the second derivative in parametric form, -
2 : .
a7y _ gy _ dy/dt provided — # 0. -
dx?2 dx  dx/dt
NOTE
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Example :11
Find dzy/dx2 asafunctionof t if x=t—t2, y:t—t3; teR
Solution :
2
As - y = dy _ dy/dt 1-3t
dx dx/dt 1-2t
dy' _d(1-3t°] 2-6t+6t°
de dt| 1-2t 1-2t)2
d’y _ dy/dt _ 2-6t+6t> 1 _ 5 gy, 62
dx?  dx/dt @-21> 1-2t @-2t)°
§88858888888
Example :12
Let C be the curve with parameterization, x=e™, y=e¢?: te®

a) Sketch the graph of C and indicate the orientation.
. dy

b) Find —- .
) dx?

c) Find a function K that has the same graph as C, and use K'(x)and K" (x) to check the
answers to (b)
d) Discuss the concavity of C.
Solution:
a) To get the graph of C, eliminate the parameter, "

2
x=e"'=1/¢', ie. ¢ :1, then y:[lJ = iz
X X X e

Note that, x=e" >0, y=€">0. Fia. (2.9)

The point (1,1) corresponds to t =0. If t increases in (—oo, 0], the point P(X, y) approaches
(1, 1) from the right. If t increases in [0, «), the point P(x, y) moves up the curve
approaching the y-axis.

. dy/dt  2e* . dy/dt  —6e™

b) = = =—2e% = = = 6e*t
dx/dt _et dx/dt  _et
c) From (a), a function K that has the same graph as C is given by
K(x):iz:x‘z; x> 0. = K(X) = -2x°=-2@"2=-2¢%.
X

=  K'(X)=6x*=6@€"" =6e". Thisvalues agree with the results in (b).
2

d) Since :—32/ = K"(x) = 6e*' > 0 VteR, the curve C is concave upward at every point.
X

§58888888888
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Example :13
Find the area enclosed by the Asteroid: X = cost, y = sin®t, 0<t<2m [see fig 2.8]
Solution :

By symmetry, the enclosed area is 4 times the area beneath the curve in the first
quadrant where 0<t < z/2 . We can apply the definite integral formula for area studied

in Math (1), using substitution to express the curve and differential dx in terms of the

parameter t. So,

1 0
Area = 4 [ ydx =4 jsin3t *3 cos? t [-sint] dt
0 /2

7l2 /2 )
12 jsin“t cos’t dt = 12 j 1-cos2t) (1+cos2t)
0 0 2 2

/2
= g ) (1—cos 2t—c0322t+cos32t)dt =§n
0

If a curve C is the graph of y =f(x) and the function f is smooth on [a, b], then the

b
length of C is given by : L =1+ [f'(x)]2 dx ; The next theorem give a formula for

a

finding length of parameterized curve.

888855888888
Theorem : 3
ﬂmg.ug.ugu.g.ug."E"'E"IEI"EI"E".E".E.ug.ug.ug.ug."g."E"'E".E."5."5".5".5."5."E."E".E."EI"E"'E".E.ug."g."g".g."g."E".E".E.ug."g."g."g."g."E."E".E.ug.ug.ugu.g.ugmm

If a smooth curve C is given parametrically by x = f(t), y=g(t), a<t<b,

and if C does not intersect itself, except possibly for t =a and t = b, then the length
: 2 2
) [a) o
dt dt

The integral formula in theorem (3) is not necessarily true if C intersects itself.
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Example :14
Find the length of one arch of the cycloid that has the parameterization,

X=t-sint, y=1-cost; teR
Solution:
The graph has the shape as shown in Fig (2.10) i T Sae
, the radius a of the circle is 2. S

One arch is obtained if t varies from 0 to 27.

L= - cost)? + (sin)? d
- 0 Fia. (2.10)

27
= I\/l—Zcost +cos’t +sin’t dt
0

2n 27
= [J2-2cost dt = [+2,1- cost dt
0 0
but sinz(t/2)=(1—cost)/2 , then

271 271
L = |2 2sin?(t/2) dt = [2sin(t/2)dt =—4(cos(t/2));" =8.
0 0

8888888588888

Example :15
Find the length in the first quadrant of the Asteroid : x = cos’t, y = sin®t
Solution:
dx )?
(Ej = (-3 cosztsint)2 = 9cos*tsin?t,

2
(2—):) = (3sin®tcost)® = 9sin*tcos?t

/2
= \/9 sin?t cos?t (sin?t + cos? t) dt
0

n/4 . 3 nl2 3 3
= [ 3sint cost dt:sinztj =>@1-0=2>=15
0 2 0 2 2

§88588888888

45



Chapter 2 Parametric Equations
And Polar Coordinates

Theorem : 4

If a smooth curve C is given parametrically by x =f(t), y=g(t), a<t<b, \
and if C does not intersect itself, except possibly for t =a and t = b, then the area S

- of the surface of revolution obtained by revolving C is

b b dx )2 dy)? . ;
S=[2rydL = 2x[g(t) (j + [j dt ; aboutthe x-axis
a a dt dt

dt

b b dx \? dy)? :
S = [2nxdL = 2] f(t) (j + (j dt ; aboutthe y-axis
a a

Example :16

Find the area of the surface generated by revolving the curve:

X = CoSt, y =1+ sint; 0<t<2x ; aboutthe x-axis
Solution:

b 2 2 21
S= szyJ(d—xj +(d—yJ dt = 21| (+sint)ysin?t + cos?t dt
2~ Ydt dt 0

_ 2n . _ 2n 2
=2n [(@+sint) dt = 2n(t —cost))" =4n
0

§88588858888

Example :17
Verify that the surface area of a sphere of radius a is 47 a’.

Solution :
If C is the upper half of the circle: x* + y* =a*, 1

then the spherical surface may be obtained by
revolving C about the x-axis Fig. (2.11).

Parametric equations for C are:

X =acost, y=asint; 0<t<=
Fia. (2.11)

b T
S=[2rnydL = 2n[asint \/(—asint)2 + (acost)® dt
a 0

T
= 27a® [sint dt = 2na® (-cost)} = 27a’(-1-1) =4na
0
§88858888888

46




Chapter 2 Parametric Equations

And Polar Coordinates

Exercise (2-2)
(I) Find the slopes of the tangent line and the normal line at the point on the curve that
corresponds to t = 2.

(1) x=4t> — 5, y=t>-1; —2<t<2.
(2 x=t3 + 1, y:t3—1; —-2<t<2.
(3)x:4t2—5, y=2t+3; te R
4) x=t3, y=t2; te 9t
(5) x=4t, y =4t + 3; t>0.
(6) x =2sint, y = 3cost; 0 <t< 2m.
(7) x=cost — 2, y =sint + 3; 0<t<2n
(1) Find the points on the curve C at which the tangent line is either horizontal or vertical.
Find 9% .
dx?
@) x=4t2, y=1t3 —12t; teR
(2) x=t> -4t y=t2-4; teR
(3) x =3t? —6t, y=4Jt; t>0.
(4) x =cos2t, y:sinzt; 0<t<m
(5) x=cosh t, y=sinht ; teR
(6) x =cos’t, y=sin® t; 0<t<2n
(1) Find the length of the curve,
(1) x =5t y = 2t°; o<t <1.
(2) x=3t, y =2t¥%; 1<t<4
(3 x=¢e' cost, y = e'sint ; o<t<nxl/2
(4) x=cos2t, y=sin’t; O<t<r
(5) x =cos’t, y=sin’t; 0<t<z/2
(IV) Find the area of the surface generated by revolving of the curve C about the x-axis,
D x=t%, y=2t; 1<t <4.
(2) x=t?, y:t—%ts; 0<t <1.
(3) x=4t, y=t°; 1<t< 2.
(4) x=1t —sint, y =1-cost ; 0<t <2r
(V) Find the area of the surface generated by revolving of the curve C about the y-axis,
1) x =441, y:%t2+%; 1<t <4.
(2) x=3t, y=1t+1,; 0<t <5.
(3 x=¢e' cost, y = e'sint ; o<t<xl/2
(4) x=3t%, y =2t ; o<t <1

§58888888888
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I- POLAR COORDINATES

II-1 Polar And Cartesian Coordinates

In a rectangular coordinate system, the order pair (a, b)
denotes the point whose directed distances from the x-axis
and y-axis are b and a respectively. Another method for

representing points is to use polar coordinates.

We Dbegin with a fixed point O (the origin, or pole) and a
directed line (the polar axis) with end point 0.

Next we consider any point P in the plane different from 0.

A4Y
P(r, 8)
P(x, y)
r
/]
0 3
Fia. (2.12)

If , asillustrated in Fig

(2.12) r=d(0, p) and 6 denotes the measure of any angle determined by the polar axis

and OP, then r and 6 are polar coordinates of P, the polar coordinates of a point are not

unique. For example, the points P(r, 0), P(r, 6+2nn); n=123,....

We agree that the pole 0 has polar coordinates (0, 6) forany 6.

Any point P(r, 0) in the polar coordinate is denoted by P(X, y) in the rectangular

coordinate system as illustrated in Fig. (2.12), so the question

“ What is the relation between the polar coordinate

and the rectanqular coordinate systems ? *

The question is arise now and the answer in the following theorem.

Theorem :5

P(r, 0) are related as follows:

The rectangular coordinates of the point P(x, y)and the polar coordinates
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Example :18
Find the polar equation for the circle : X2 + y2 =9,
Solution:
Substituting x =rcos6, y =rsin0 to the given equation we obtain the

corresponding polar equation r =3 which is a circle centered at origin with radius 3.

§88888888888

Example :19

Find a polar equation for the circle : x? + (y - 3)2 =9,

Solution :
Substituting x =rcos0, y =rsin0 to the given equa ¥ o
X Ly a1
2 2 . 2 or

= r<cos0+ (rsin —3)° =9, T —_r="fsind
e Y

=X r? cos?0+r2sin?0 — 6rsin® +9=9 I |
(0. 3w |

= r2— 6rsin®@ =0, r=0 or r= 6sind /

which is a circle centered at (0, 3) with radius 3. = x
§58888888888
Fia (2.13)
Example :20

Replace the following polar equations by equivalent Cartesian equations and identify
their graphs.

4

i) rcos® = 5, (ii) r? = 4rcos® i) r= —
0 (i) (i) 2c0s0 —sin®

Solution:
Use the substitution x =rcos6, y =rsin6o

(1) rcos6 =5 ie x=5
The graph is vertical line through x =5.

(ii) r? = 4rcos0
x2+y2:4x ie (x—2)2+y2:4

The graph is circle , radius 2 and centered at (2, 0)

4
@y r= ——
2c0sH —sin0®
2rcos®—rsin6=4 ie. 2xXx—-y=4 or y=2x-4
The graph is line with slope m =2 and y-intercept b=-4

§58888888888
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Example :21
Sketch the graph of the polar equation r =4sin6, 0<6 <.
Solution:
T T T T 27 3n | 5¢
0 0 — — — — | — |—|— | =n
6 4 3 2 3 4 6
Flo| 2 [2v2] 23] 4 |23 )22 2] 0
w
) («.)
Fa 11
(@v3.5) (va.g)
M/ :%—? Y.
(‘\/‘ 4) (2\3‘ 5)
Su s
(2'?) (ﬂ
O >
r=4sin@

If 6 vary from = to 2m, the obtained points are the same as obtained above.

It is a circle of center at (2, n/2) with radius 2,

In general, by using the same method as in the preceding example, we can show that

the graph r =asin6, with a = 0, is a circle of radius of radius a/2 of the type illustrated in
Fig. (2.14a), and the graph: r =acos0, with a = 0, is a circle of radius of radius a/2 of the

type illustrated in Fig. (2.14b), and the graph

A 1&)‘
r = asin 8,
a0 r=acosé,| r=acosé,
: a<q a>0
a = G,
= = o 2
2 / N =
= > Y 2
b 4 ™S x 1( < >
l/ \’ \ y x
\ > . et
Nzl " asm Y,
a<0
Fig. (2.14a) Fig. (2.14b)
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** A Cardioid Or a Heart — Shaped **

Example :22
Sketch the graph of the polar equation:  r =2 + 2cos6
Solution:
olo| Z LA A A R
6 4 3 2 3 4 6

rl 4 (2+J3] 2+42 | 3 2 1 [2-v2 |2-V3] 0

Since the cosine function decreases from 1 to -1 as 6 varies from 0 to = , it follows
that r decreases from 4 to 0 in this 6 interval. Plotting these points in the r6 plane leads to

the upper half of the graph sketched in Fig. (2.15). If 6 increases from r to , then the

=

cosine function increases from -1 to 1 and r increases from 0 to 4. Plotting points for

7t < 0 < 27 gives us the lower half of the graph.

Fig. (2.15b) Fig. (2.15a)

Plotting points corresponding to 0 <8 < r, in Fig. (2.16), the graph of any of the
following polar equations, with a = 0, is a cardioid .

O, (Y T
(N T R N AN

r = a(l + cosd) r=a(l + siné) r =a(l — cosé) r=a(l-smé)
Fig. (2.16)

If the polar equation is of the form: r=a+bcos6 or r=a+bsind

the graphs are called limacons.

§88888888888

The special case of limacons in which |a| =|b| are cardioids. Some limacons contain

a loop, as the following example.
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Example :23
Sketch the graph of the polar equation: r = 2 + 4 cos 8
Solution
olo| Z | Z | E|E|2E| 3% |57
6 4 3123 4 6
f 162423 |24243| 4 |2 0 [272V2 27208,

In the graph in Fig. (2.17), 6 varies from 0 to 7 gives
us the lower half of the small loop and the upper part

of the large loop, and from 7 to 27 gives us the rest

of the graph. ”
r=2++4cos @
885885888888
Fia. (2.17)
Example :24

Sketch the graph of the polar equation: r = g + €0s6

Solution

T V4 V4 2 3z 5
“1% % | 7 |3l2|3] 4 |6 |”
r 52 3+2‘E 3+2ﬁ 2 32 1 # % 1/2

In the graph in Fig. (2.18), € varies from 0 to 7 gives

us the upper half of the graph, and from 7 to 2z gives

us the lower half of the graph.

Fia. (2.18)

§88888888888
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** A Four-Leafed Rose **

Example :25
Sketch the graph of the polar equation: r =asin26 for a>0

Solution
Instead of tabulating solutions. If & increases from 0 to /4, then 26 increase from 0 to
712 and Fig. (2.19) hence sin 26 increases from 0 to 2. It follows that r increases from 0 to
a inthe interval [0, z/4].

If we next let @ increases from z/4 to =/2,then26 changes fror~ —'"

to £ and hence r decreases from a to 0 in the interval =8

1m 7
(- %) (@3
[#14, =12]. This gives us the graph in the 1st quadrant, the QQ

2nd, 3rd, and 4th are the same. This graph is called a four-leafed (/// =
rose . In general, a polar equation of the form, S 3
| (%) (%)
r=asinnd or r=a cosné
r = asin 20
For any positive integer n greater than 1 and any non-zero real Fig. (2.19)

number a has a graph that consists of a number of loops through the origin.

If nis even, there are 2n loops and if n is odd, there are n loops .

Different cases are illustrated in Fig. (2.20a) [Lemniscates], (2.20b) [Three leaved rose], and
(2.20c) [8 leaved rose]

1:. Fia. (2.20a) xi3
- ’ B =i{6
| S
L ‘I"'.
\\ \ r f cos ._:'-FJ o
HH::. -:"---- --H-“l
.-""J -\----__— —"F'-)'I-
V|
A
| 4
(\/,

Fia. (2.20c)
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Example :26 L N
Sketch the graph of the polar equation r=6 for 6> 0. h_\ \
Solution I .
. . . K-/Z 47
The graph consists of all points that have polar coordinates of the T
form (c, c) for any real number ¢ > 0. Thus the graph

contains the points (0, 0), (n/2, n/2), (x, ©), and so on. Fig. (2.21)
As @ increase r increase at the same rate, and the spiral winds around the origin in a

counterclockwise direction, intersecting the polar axis at 0, 2m, 4m,...,as illustrated.
In general, The graph of the polar equation r=a 6 for any non zero real number a is a

Spiral of Archimedes.

§8858888888

Example :27
Find the polar equation for the hyperbola x* — y* =16
Solution
Substituting, X =r cosé, y=rsinéd

r’(cos’6 —sin®d)=16 or  r®cos 260 =16

=0 g6 sec20

cos 260
§5888888888

Example :28

Find the polar equation of an arbitrary line.
Solution
The general equation of an arbitrary line is: ax + by =c¢
Substituting, x =r cosé, y=rsind

arcoséd +brsin@=c or r(acosé +bsinfd)=c
Then the polar equation of an arbitrary line is:

c
r= - )
a cosé@ + bsing

§8888888888
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11-2 Slope Of Tangent Line In Polar Form

In x-y plane, the graph of y =f(x) may be symmetric with respect to the x-axis, the
y-axis, or the origin. So in the r—6 plane, the graph of r=f(6) may be symmetric with

respect to the polar-axis, the line 6 =x/2, or the pole.

Some typical symmetries are illustrated in Fig. (2.22)

(r, w - 0)
o (=r, =€) (r, ) ~(r, 8)
T N
i \r-o \ ‘
-6 : , '
X WV =
/ / \¢ gy
’ ‘ /
_,ﬁ[{_) ( !:N
(r, @+ 0)
(i) about polar-axis (ii) about line 6=7/2  (iii) about pole

Fig. (2.22)

This leadstothe next RESUL TS

/ (1) The graph of r=f(6) is symmetric with respect to the polar axis if ~ f(-6) =f(6).
(2) The graph of r=f(6) is symmetric with respect to the vertical line 6=n/2 if
cither

a) f(6) = f(n—-6) Vo or b) f(-r,—-6) =f(r, 0)
(3) The graph of r = f (@) is symmetric with respect to the pole if either:

a) rcanbereplacedby -r or b) f(0) = f(x+6) VO

Tangent lines to graphs of polar equations may be found by means of the next theorem.

Theorem : 6

The slope m of the tangent line to the graph of r = f(6) at

the point P(r, 8) is m :(dr sinf + r cosej (dr cosO — rsin OJ
do o[
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Proof

If (X, y) are the rectangular coordinates of P(r, 8) then,
X =rcos6 = f(0) coso, y =rsin® =f(0) sino,
dy (dy/do) s . ,
=—= = (f(0)cos 6 + f'(0)sinO)/(f(0) (—sinO) + f'(0)cosO
o = (@/do) ~ (@000 + F(0)sin0)/(F(6) (~sin) + '(6)cos0)
_ f'(0)sin® + f(B)cos®  (dr/dB) sin® + r cos6
f'(0)cos0® — f(0) sinO (dr/d6) cos® — rsin6

88888888888

Example :29
For the Cardioid r =2+ 2cos@ with 0 <6 < 2x, find,

(a) the slope of the tangent lineat 6 = /6.

(b) the points at which the tangent is horizontal or vertical.

Solution

m - (dr/dO) sin® + rcos®  (-2sinB) sin® + (2 + 2cos0O) cosO
(dr/d6) cos6 — rsin6 (-2 sinB)cos® — (2 + 2cos0O) sin6

_ 2(cos®@ -sin®0) + 2cos®  Cc0s20 + COSO
—2(2sinBcosO) — 2 sind sin20 + sin®
(@) For 6=n/6,
__cos20 + cos® _ cos(n/3) + cos(n/6)
sin20 + sin6 sin(n/3) + sin(n/6)
W2+ (B2
(J3/2) + 1/2)

(b) To find horizontal tangents, cos26 + cos6 =0, then

2c0s20-1+cos0=0 or (2cos®—1)(cosO+1)=0
which gives, cosO=1/2 or cosO=-1, ie.

O0=n/3, 5n/3 or 0=m.
The corresponding points at which the tangent is horizontal, (3, ©/3), (3, 5n/3) and (0, x)
For the vertical tangent, sin26 + sind = 0
2sinBcosO + sin6=0 or sin® (2cos6 + 1) =0

ie. sin0=0 or cosO=-1/2,then ©0=0, = or ©O=2xr/3, 4n/3.

Since we found above that & = 7 gives us a horizontal tangent line, then the points at

which the tangent is vertical are (4, 0), (4, 27/3) and (1, 42/3).

§5588888888
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Exercise (2-3)

(1) Sketch the graph of the polar equations,

(1) r=5 (2) 6=17x/4 (3)r=3cos 6
(4 r=1+2cos® (5) r=4+4sin®6  (6)r=2sin 46

(7) r*=4cos 260 (8) r=1-cscH

(1) Find a polar equation that has the same graph as the equation in x and y.

(1) X¥*+y*=16 (2) 2y=-x () y*-x*=4
(4) xy=8 (5) r’cos’®=8rsin®@ (6) rsin®=6rcosH

(1) Find an equation in x and y that has the same graph as the polar equation and sketch the
graph in x—y plane
(1) rcos6=5 (2) rsin=-2 (3) rsin6—2rcos6="6
(4) r=4secH (5) rsin®+r’cos’0=1 (6) r’sin20=4

(IV) If a and b are non-zero real numbers, prove that the graph of r =a sin@ + bcosé

is a circle, and find its center and radius.

88888888888
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11-.3 Integrals In Polar Coordinates

Theorem : 7

. If f is continuous and f(6) >0 on [a, B], where 0<a < <2m, then the
area A of the region bounded by the graphs Fig. (2.23) of r=f(6), 6=a 6= s,

. B

A= lede_j £2(0) do .

” a2
{;:L.E...E...E...E...E...E...é...i...i...E...E...E...E...E...E...E...E...E...é...i...i...i...E...E...E...E...E...E...E...E...é...i...E...E...E...E...E...E...E...E...E...E...é...i...i...i...i...E...E...E...E...E...b/

Fig. (2.23) Fig. (2.24)

The area A of the region bounded by the graphs Fig. (2.24) of r=f(0) , r=g(6) and
thelines: 6=a O6=pIs,

Example :30
Find the area of the region bounded by the cardioid: r = 2 + 2cos6

r=2+ 2cos @

Solution ',
271 27
A=Tir2do = [Z(2 + 2c0s0)2 do ) i T

02 02 *U i
2 1
Replace, cos“ 6 = > (1 + cos 20),

Fia.(2.25)

T
A=[(6+ 8cos® +2c0s20) d0 = (60 +8sinO +sin20); = 67
0

§8888888888
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Example :31
Find the area of the region that is inside the circle r = 2cos6 and outside the circle r = 1.
Solution 6="
The points of intersection are (1, z/3), (1, —z/3). £
pi=3l — r=2c0s
1 /3 y // \ 2 cosd
= [(Zcos e) - @ ] do /4 \
—TC/3 ()L/ \
nl3 k / polar axis
[(2cose) - ] do \\ /N
\ A\,/
Tl’,/3 X
[4cos2 0 - 1]de = [2(1+ cos 20) — 1] do g=2"
- T £ - 1.01 Fia. (2.26)
3 2
88885885888
Example :32

Find the area of the region R that is inside the cardioid
r =2 + 2cos@ and outside the circle r = 3.
Solution

The points of intersection are (3, 7/3), (3, —z/3).

e
9= =3

An 1n/3[

(2+ 2cose) -3 ]de
2 /3 Fia. (2.27)

n/3
[4cos 0 + 8cosO - 5] ao

n/3
= [ @+ cos 20) + 8cos6 - 5]do = %\/é Cr - 465
0

88888888888

Example :33
Find the area of the region R that lies inside the circle r = 1 and outside the cardioid
r=1- coso e 7 Upper limi
S M= 1
Solution ’ ;\
The points of intersection are (1, ©/2), (L —nt/2). I"'f i A
72 \ -‘\ . ( /'__-
) J‘ [(1) - (1 — COS 9) ]d9 H.-___;\_-]:m-crlmm
*”/2 8=—a/f2
T i Fia. (2.28)
= ( jj ()2~ @~ cosg)?]do = I [2c0s6 — cos?olde T
/2 /2
T [Zcose— 1+c0526}d9: {Zsine_g_smze} _,_®
0 2 4 |, 4

§8888888888
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Example :34
Find the area of the region bounded by the graph of the polar equation:
r’ =9 cos20
Solution
1 nl4 ﬁ*ﬂfm%
A= x4 | 9cos20de N 2
] .
.o [sin207"" _ 18 _
=18 20| =B -g)=0. i 229
0

888588888888

Example :35
Find the area of the region between the inner and outer, loops of the Limacons

r=1- 2coso 9=1in

. r=1-2cos8
Solution ey

It is easy to verify that r = 0 when 6 = n/3 and when /\
- *

6 =57/3. The outer loop is formed by having & increase from

713to 57/3. Thus the area within outer loop :

57/3 1 ) o=37
A= | E(l—Zcose) de
n/3 Fig. (2.30)
157[/3
=5 [ [L—4cos6 + 4cos® 6] do
/3
_ % (30 — 4sin6 +sin20)°7L3 = 21 + #

The lower half of the inner loop is formed when & increases from 0 to ~/3, and the

upper half when @ increases from 57/3 to 27z (verify this). Therefore, we have area within
inner loop :

/3 1 ) 2n 1 )
A,= [ =(@-2cos0)dd6 + [ =(1-2cos6) do
2 2 2
0 5n/3
n 33 m 3V3 _ 343
2 4 2 4 2

ThUS, A = Al - A2

:(zﬂmj _ (“_MJ _ 1 +3/3 =834
2 2

§8888888888
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Example :36
Find the area of the region bounded by the circle r =2sind and the limacons

r=3/2 —sin0.
Solution
The points of intersection are (1, ©/6), (1, —5n/6).

r=2sin6

From the symmetry of the region,

171'/6 1n/2 3 2
A =2{— [[2sinoFdo+ = | {——sin 9} de}
2 24 12

-0 716

polar axis

3
r==-sinf
r'4

_5r 15V8 e

4 8 Fig. (2.31)

§88588888888
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Exercise (2-4)

() Find the area of the region bounded by the graph of the polar equation,

(1) r=2cos6 (2) r=5sin0 (3) r=1-cos6

(4) r=6-6sin® (5) r’=9cos20 (6) r*=4sin20

(1) Find the area of the region R.

(1)R={(r,e):Oses

r Ogrgee}
2

(QR= {(r,@):Osegn, OSrSeZG}
B)R={r,0):0<0<m, 0<r<20}

(1) Find the area of the region bounded by one loop of the graph of the polar Equation,
(1) r*=4cos 20 (2) r=2cos36

(3) r=sin66
(4) r=3cos56 (5)

x=0,y=0,x=4 and x*+y*=25
(IV) Find the area of the region that is inside the graphs of both equations,
(1) r=2+2sino, r=1 (2) r=2sindo r=1

(3) r’ =4cos 26, r=1 (4) r=2siné, r =2cosé

88888888888
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I1-4 Polar Equations Of Conic Sections

The conic sections in Cartesian coordinates were studied in the first chapter, Polar
coordinates are especially important in astronomy and astronautical engineering because
satellites, moons, planets, and comets all move approximately along ellipses, parabolas, and
hyperbolas that can be described with a single relatively simple polar coordinate equation.

We develop that equation here after first introducing the idea of a conic section’s
eccentricity. The eccentricity reveals the conic section’s type (circle, ellipse, parabola, or

hyperbola) and the degree to which it is “squashed” or flattened.

We can define the conic sections in a more general form as “ The set of all points moves such
that its distance from a fixed point to its distance from a fixed line is a constant ratio”. The
fixed point is called focus “F”, the fixed line is called directrix “d”, and the constant ratio is

called eccentricity “e”.

Definition : 3
/ - distance between foci
el Eccentricity e = — -
distance between vertices
2 y2
(1) The eccentricity of the ellipse : — + b_2 =1 (a >b) is
a
2 K2
a a
. . X2 y2 .
(2) The eccentricity of the hyperbola : — —=5=11
a b
c Va2 +b?
e=—=——>1
[ a a
\ (3) The eccentricity of the parabola:is e =1

To find the polar form for the conic sections, Let P(r, 0) is Pl PULG) Ls
the point moving according to the definition, F is the fixed r \
point at origin and L is the fixed line. 750 4 \ ‘ _

£ & 1D(d, ( e
From Fig. (2.32), d(P, F) = r, d(P, Q) = d — rcos, ki
Where d is the distance between F and L. //

,/

Fia (2.32)
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_d(P,F) r

Now the eccentricity : e = =
diP,Q) d-rcosb

de

r=de—recos® or r + recos®@=de ,thennr = ———M—
(@ + ecos0)

Theorem : 8

.. A polar equation, that has one of the forms,
de de
r

r=——— or =
1+ ecosd 1+ esing

~is a conic section with major axis along the polar axis or the line 6 =mn/2

~ respectively. The conic section is a Parabola if e=1, Ellipse if 0<e<1, or -

Hyperbola if e > 1. /

Example :37
10

Describe and sketch the graph of the polar equation: r = ——M— .
3 + 2cos6

Solution

Divide both numerator and denominator by 3,
10/3 &1 D

r = ——— : then e—2<1 * y \
- ' T a V0, ) 04

Thus, it is an ellipse with major axis along the puia anso.

: . Fia. (2.33
To find the verticeswe put 6 =0 and 6 =r. 9. (2.33)

=0, r=2, then V(2,0),
O=x, r=10 ,then V10, ),
then 2a =12 or a = 6. The center of the ellipse at O (4, x)

since e=c/a, e=2/3, a=6, then c=4,and b=,a’-c?=+20. The
fociare F(0,0) and F(8, x)

§5588888888

64



Chapter 2

Parametric Equations
And Polar Coordinates

Example :38

Describe and sketch the graph of the polar equation :

Solution

12 - 2

r= =
6+ 2Sin 6 1+%Sine

, then : e:1<1
3

The conic section is Ellipse with major axis, the y-axis
To find the verticeswe put 6 ==n/2 and 6 =3n/2.

12 12 _ 3

r

12
6+2sind

. Ix
Vi=(5.3)

T
0=— = r= = — ==, Vi=(=,—
2 6e2 8 2 T G3)
6:3—n:>r: £=3, V2=(3,3—n)
2 6-2 2
9
2a = E+3 = —, then a=-
2 2 Fia. (2.34)
1 9_3
C=ea==Xx—=—
3 4 4
b2:a2_czzg_i: g, then b:i
16 16 V2
88888885888
Example :39
Describe and sketch the graph of the polar equation: r = L_
2 +3sin0
Solution
Divide both numerator and denominator by 2, r = 5 then e = 3/2 > 1.
1+ 3 sin 6
Thus, it is hyperbola with major axis along the line 6 = /2.
\ s
To find the vertices we put 6 = /2 and 6 = 3rn/2. N T /
S
0= 7[/2, r=2, then V(Z, TE/Z), N, V10, 3112)//
N
0=3n/2, r=-10 ,then V(-10, 3n/2), L7
(0(4,3m'2)
then ~_or a = 4. The center of the hyperbola N
/
at O (-6, 3n/2) s valem
N,
since e=c/a, e=3/2, c=6, / F(o’lm) .
/‘/ | \\\\\\
then , b=4c?—a% =420.

The foci are F(0, ©/2) and F(-12, 3n/2) .

§8888888888
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Example :40
Describe and sketch the graph of the polar equation:

. 15
4 — 4 cos 6

vasis m)  F(O.0)

Solution
Divide both numerator and denominator by 4, o
15/4 - x=15/4

r = ————— : then e = 1.
1- cosé@

Fia.(2.36

The graph is a parabola with major axis along
the polar axis.

€ =0, r undefined

@=mx, r=15/8 ,then V(15/8, 7).
The parabola open right with vertex at V(15/8, #), and d = 2p=15/4, e
p =15/8. Then the focus F(0,0) at the pole (origin), and the directrix d: x =15/4

§8858888888

Example :41
Describe and sketch the graph of the polar equation: r = 3
2 + 2cos @
Solution
r= 3 = 8/2 , then e=1.
2+2cos@® 1+cosé
The conic section is Parabola with vertex at the polar-axis.
3
0=0 = r=>, v=(3,0 (0
4 4 V(3/4,0)
K. 0)
o=" = r= 3 3 X
2 2
0= 3 = r= 3 — 3
2 2 (E%') d:(3/2,0)

de=3/2, then d = 3/2, i.e.
the distance between the directrix and focus = 2 p = 3/2.

Then the focus F(0,0) atthe pole (origin), and the directrix
d:x=3/2

§5588888888
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Example :42

Find an equation in x and y that has the same graph as the polar equation |,
15

r = ——
4 — 4sin O
Solution

r4 —4sin0) =15 or 4r = 4rsin® + 15

44x* +y* =4y +15
Squaring both sides and simplifying,
16(x% +y?) =16y? +120y + 225 or 16 x?> =120y + 225

Which is an equation of parabola.

§8858888888

Example :43
Find a polar equation of the conic with a focus at the pole, eccentricity e =1/2

and directrix r =—3secé.
Solution
The directrix : r =—-3secd, rcosd=-3ie. x=-3.
Since the focus at the pole, then the distance d between the focus and directrix d =3.
Then,

B de B 3)(1/2) B 3
1 — ecosd 1-(1/2)cosd 2 —cosé

88888888888
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Exercise (2-5)

() Describe and sketch the graph of the polar equations,
12

@@ r=— . (2 r:L. 3 rzL.
6+2sind 2+6c0s0 2+2cosd
2 4 2
4) r= —— . 5 r= ———. 6) r= ———.
@) 3+3siné ®) cos 0-2 ©) cos 8—-4
(7) r= 4secd 8 r= 2secd ©) r= 6 .
2secd -1 4secd +1 4 —cos@

(1) Find the equations in x and y for the following polar equations
12

12 3
Hr=——— 2 r=——MM—. ) r=———.
@) 6+2sind @) 2+6c0s0 @ 2+2c0s@

2 6 6
4) r= ———. 5 r= . 6) r= ——.
@ 3+3sind ®) 4 —cos@ ©) 1+4cos@

(1) Find a polar equations of the conic with focus at the origin and the given eccentricity
and equation of the directrix.

(1) e:%, r=2seco (2) e:%, r=3csco
(3) e=1, rcos6=5 (4) e=1, rsin6=4
(5) e=3, r=-4secH 6) e=2, rsin6 =-3
(7) ezé, r=4csco (8) ez%, rcoseo =3

(IV) Find the slope of the tangent line to the conic at the point that corresponding to the

given 6.
(1)r=1—2_, 9 =~ (Z)r:L’ 9 =~
6+2sin@ 6 2—6co0s@ 3
(3)r:L, _ (4)r:l—2_, g ="
2—-6c0séd 2 6-2sind 2
5) r:L, _ 7 (6)',:1—2-’ 0 =0
2+6c0s@ 3 6-2sind

§5588888888
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CHAPTER 3

MULTIVARIABLE FUNCTIONS
( FUNCTIONS OF SEVERAL VARIABLES )

Functions with two or more independent variables appear more often in science than
functions of a single variable, and their calculus is even richer. Their derivatives are more
varied and more interesting because of the different ways in which the variables can interact.
Their integrals lead to a greater variety of applications. The mathematics of these functions is

one of the finest achievements in science.

1- Functions Of Several Variables

In this section, we define functions of more than one independent variable and discuss

ways to graph them , we start by definitions to the function of several variables.

Definition : 1

function f on D is a rule that assigns a real number, w =f(X{,X5,...,X,) 10 =

each element in D. The set D is the function's domain. The set of w-values taken on

by f is the function's range. The symbol w is the dependent variable of f and f is .

said to be a function of the n independent variables (X1,X5,...,X,).

If f is a function of two independent variables, we usually call the independent
variables x and y and the domain of f is a region in the xy-plane. If f is a function of three
independent variables, we call the variables x, y, and z and the domain is a region in space. If
the domain is not specified, then it is automatically taken to be the largest set for which the

expression defining f is meaningful.
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Example : 1

Letf(x,y) = vy — X2 . Find the domain of f and sketct

Solution
The domain D is the set of all pairs (X, y) with:

y
Interior points,
where y — x> ()
]
f
/
/
[
A

2 2 Y
—-Xx“>0 or y>x-. *
y y Outside, \ / The parabola
, ] y-1<0 B y-x'=0
The parabola: y = x“, is the boundary of the domain. P
| e - |
The points above the parabola make up the domain’s interior. S "
§888588588888
Fia. (3.1)
Example : 2

Find the domain of the function f(x,y) =100 — x? — y2

Solution
The function is defined for all values of x andy,

i.e. The domain is the entire xy —plane.
§88858888888
Example : 3

. . . cos 'z
Find the domain of the function f(x,y,z) = (

144x% + y2 —1))

ap

Solution
The domain consists of all triples (x, y, z) with X2 + y2 >1 >
and | z| <1. This is the region outside of cylinder and bounded /CD
by the two planes z=-1, z=1 asinFig. (3.2).
Fia. (3.2)

A function of three variables is defined just as in the above definition, except that the

domain is the set of ordered triples (X, y, z)) and the values of f are denoted by (X, y, 2).

888888888888
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2- Graphs Of Functions Of Two Variables
Definition : 2

The set of points in the plane where a function f(x, y) has a constant value ..
f(x, y) =c is called a level curve of f. The set of all points (X, y, f(X,y)) in space ..
for (X, y) in the domain of f, is called the graph of f. The graph of f is also called -

the surface z =f(x, y).

The graph of an equation in the three variables X, y, and z is a surface in space.

The graph of a linear equation: ax + by + cz = d is aplane. The simplest planes are the

planes: X = Xq, Y = Yg and z = z, . They are represented in Fig. (3.3)

Fig. (3.3)

The graph of a second degree equation in X, y, and z is a surface in space called a
quadratic surface. These surfaces correspond to the conic sections in the plane. There are

several types of quadratic surfaces. We shall present each of them in its simplest form.

Example : 4 Hlpicicos s | |
inthe plane ; - ;
2 2 2
o X z r
The ellipsoid : — + y_2 + — =1
a b C

cuts the coordinate axis at
(£ta,0,0), (0,£b,0) and (0,0, +c). Fig. (3.4)

§55555855588 ThEdipse 3 o5

Inthe yz-plane

Fia. (3.4)
If any two of the semi-axes a, b, and c are equal, the surface is an ellipsoid of

revolution. If all three are equal, the surface is a sphere.
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Example : 5
e . x2 y? oz
The elliptic paraboloid : — + =— = —,
a b> ¢

Is symmetric with respect to the planes x = 0 and y = 0. The only intercept on
the axes is the origin. Except for this point, the surface lies above or entirely below the xy —

plane, depending on the sign of c. Fig. (3.5)

5
2 y?

The ellipse # + B2

in the plane z = ¢

C =2
The parabola z = ﬁ—\ =1

in the xz-plane ~

c parabola z = ﬁ y?
in the yz-plane

L

Fia. (3.5)

If a = b, the elliptic paraboloid is called a circular paraboloid. In this case the

cross sections of the surface by planes perpendicular to the z-axis are circles centered on the z-

axis.
888858888588
Example : 6
2 2 2
. X z
The elliptic cone: — + y_2 =
a b c

Is symmetric with respect to the three coordinate planes. Fig. (3.6)

The line z =—£5, 2 2
e line z ) The eIli])Se'L7 + ;_) =1
2T 53

% . i = " a
in the yz-plane \ z _~ inthe plane z = ¢

The line z = Sx
a

in the xz-plane —___
.

ELLAPSE

If a = b, the cone is a right circular con. @ ¢©)

§58888888888
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Example : 7

NG y2 72
The hyperboloid of one sheet : — + = - = 1,
a b c

Is symmetric with respect to each of the three coordinate planes . The plane z = z, cuts the

surface in an ellipse with center on the z-axis and vertices on one of the hyperbola. Fig. (3.7)

2

2 42 :
Part of the hyperbola 25 — *5 = 1 in the xz-planc
a~ €=

2 +2
The ellipse 2 -+ Y=
a” b+

2

A
/" inthe plane z=¢
/

g
- X" Y
T'he ellipse = + =5

R

~[ in the xy-plane

/!
+ HYPERBOLA

A
X :l
et Fia. (3.7)
888858888588
Example : 8
) x2 yz 72
The hyperboloid of two sheets: —- — reay =1,
a C

is symmetric with respect to each of the three coordinate planes. The plane z =0 does not

intersect the surface, in fact, for a horizontal plane to intersect the surface, we must have

|z| > c. _— \

The hyperbola P
4 }j L y

a?

> g & ‘),, =
» X2 P > - (4]
in the xz-plane = - in the yz-plane
\ Ty
":\ p (0,0, —¢)

Vertex

ELLIPSE

Fia. (3.8)

§88588888888
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Example : 9

2 2
The hyperbolic paraboloid: y _x _Z ;. ¢>0,
b? a? c

has symmetry with respect to the planes x=0 and y=0

[he parabola 2 = = v* in the yz-plane
b=

Lot X

in the plane = ~c

Fia. (3.9)

8888888588888
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Exercise (3-1)

Determine the domain of the function f(x, y) and sketch it.

@ fxy) = 1-x2-y? (2 f(xy) =3Vx +y

3) fx, )= Jy? -4 -16 (@) f(xy) = Jx -y + 2

(5) f(x, y) = \x* 4y’ ~ 25y 6) f(x,y) =ﬁy2_4

(M) f(x, y) =In(x +y) ® f(xy) = Jx -1 +y

9) f(x, y) =sin~* (x +y) (10) f(x,y) =In(x* +y? -1)
1

(12) f(x, y) = cos™ (x — y)

@) 00 ) = =

8888888588888
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3- Limits And Continuity

This section treats limits and continuity for multivariable functions. If the values of

f(x, y) lie arbitrarily close to a fixed real number L for all points (x, y) sufficiently close to
apoint (x,, Y,), we say that f approaches the limit L as (X, y) approaches (x,, Y,) .

We say that a function f(x, y) approaches the limit L as (x, y) approaches (X,, y,) and

write, lim f(x,y) = L
(x,y)—>(x0.Y0)
Theorem : 1
4,{%:?...E...E...E...;...E...E...E...E...E...E...E...E...E...E...E...;...E...E...E...E...E...E...E...E...E...E...E...;...E...E...E...E...E...E...E...E...E...E...E...;...E...E...E...E...E.\..ET}\
i If lim f(x,y) =L and lim X, y)= M , Then, e
T (y)>(x0,¥0) oo a0 Y )
1 1. Sum & Difference Rules:  lim  (f+g) = L+ M.
(x,¥)—(x0.Y0)
.i.i 2.Product Rule: lim (feg) = LeM.
(x,¥)—>(x0.Y0)
-i~i 3. Constant Multiple Rule : lim Kf = KL, K isaconstant
e (x,y)—>(x0.Y0)
4. QuotientRule:  jim 1Y _ Lo v,
(x,Y)>(x0,y0) 9(X, y) M
i 5.Power Rule: If m and n are integers, then:
- lim  [fo y)]™" = ™" provided L™" isareal number -
" (%)= (x0.y0) iy
Example : 10

Evaluate the following limits,

G lim (y-2) = 6-2=4.
(x,Y)—>(2.3)

(i) lim  (xX’y+3xy?) = 4+48=52.
(x.y)—>(1 4)

(iii) lim  (4x? +y3sinx) = n%+ 1.
x,y)—>(n/2,1)

§88888888888

If the limit at origin (x, y) — (0, 0), and the value of limit = 0/0 , we can use a

simple method by considering the limits through the set of all lines passing through the origin.
If this limit depend on the slope of the lines, then the limit depend on the path and so the limit

does not exist.
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Example : 11
Show that the following limits does not exist
2,2
M lim - . i) tim XY
(x,y)=>(0,0) x? + y? (x,y)—>(0,0 x? + y?
Solution
@ tim —Y - lim AT UL
N->0,0) x2 +y2 (x>0 x2 +y2 x>0 x2 4 m?x?
Yy =nmX
. m m
= lim > = 5 -
x=>01+m 1+m

The limit depend on the slope of the lines m, i.e. the limit depend on the path and so

the limit does not exist.

2 2 2 2 2 2,2
Gy tim XY _  gim XY iy 2 ZMX
xN->0,0 x% +y2  (x0N->0,0 x% +y? x>0 x2 4 m?x?
y=nmX
. 1-m? 1-m?
= lim =
x>0 1 + m? 1+ m?
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The limit depend on the slope of the lines m, i.e. the limit depend on the path and so

the limit does not exist.

As with functions of a single variable, continuity is defined in terms of limits.

Definition : 3

i Afunction f(x, y) is continuous at the point (x,, y,), if:
[ 1.f isdefined at (Xq, Yg)

.. 2. lim f(X, y)exist

(X,¥)—>(x0.Y0)

3. lim f(x,y) = f(Xq, Yo)

" (*x,¥)—>(x0.Y0)

A function is continuous on a region D, if it is continuous at each point in D.
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One of the consequences of Theorem (3.3.1) is that algebraic combinations of continuous
functions are continuous at every point at which all the functions involved are defined. This
means that sums, differences, products, constant multiples, quotients, and powers of
continuous functions are continuous where defined. In particular, polynomials and rational
functions of two variables are continuous at every point at which they are defined.

If z= f(x, y) is acontinuous function of x and y, and w = g(z) is a continuous function
of z, then the composite w = g(f(x, y)) is continuous. Thus, the polynomials, exponential,
sine, cosine, and logarithmic functions are continuous at every point (X, y) .

As with functions of a single variable, the general rule is that composites of continuous

functions are continuous. The only requirement is that each function be continuous where it is

applied.
Example : 12
Find all points where the given function is continuous:
. .. X+ 3
(i) F0)=— C ) f =
XS -y X“+y
Solution

(i) The function is a quotient of two polynomials (continuous functions), and so it is

continuous at any point except at the denumerator equal zero. So the function is continuous at
all point except at y = x°2.
(i) The function is a quotient of two continuous functions, and so it is continuous at any

point except at the denumerator equal zero. The denumerator equal zero at (X, y) = (0, 0),

then f (x, y)is continuous for all values of (X, y)except at (x, y) = (0, 0) .

8888888588888

Example : 13
Discuss the continuity of the following function
Xy :
— it (x,y) #(0,0)
f(x) 1 x? +y?
0 if (x,y) =(0,0)

Solution

The function is also continuous at any point (x,y) = (0, 0). At (x,y)=(0, 0) the
function is defined, f(0, 0) =0, but the limit as (X, y) — (0, 0) does not exist and so the

function is discontinuous at the origin.

§88588888888
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Exercise (3-2)

() Find the limits of the following functions if it exists.
. . 3x% - 2y? +5
D lim 3y +2x 2) lim
® (0 y)—>(4.-2) a ( )(x,y)—>(0,0) x2 + y2 +3
. sin Xy . X siny
3 lim 4 lim
@ x)-02 X ( )(x,y)e(l,O) x? +1
G)  lim Xy ©6) lim X
(xy)=>(0,0) x% — y? (xy)—>(0,0) x2 —y
2
: Xy : Xy
@) lim _ 8 lim
(x)—>(0,0) x2 + y? R (xy)=>(0,0) x2 + y*
© lim X’y 1) tim XY
(%) —>(0,0) x4 + y? =00 x* 4y
2 2
@y  lim cos Xy (@2) lim sin [L]
(x,¥)—>(0,0) x? +y? +1 (x,)—>(0,0) X-y+3
(1) Discuss the continuity of the following functions,
2 2
X -y +1 2x -3y +1
@ fFxy) = 5V (@) fx,y) = 212
X +y +3 X+y-1
2 2
Xe = +1 COS X
@) fix,y) = 5L @ f(xy) = 2
X“+y -3 l1-e
e’ +1 x? +y?
6 fxy) = 6) f(x,y) = ——2—
1 - cosx 2 — COSXY
X sin cos (X +
7) 1(x,y) = 5 ® f(x,y) = LBEEY)
X+y X—-y
2 2
X -y .
—  if (X #(0,0
@ty | xZryz N 700
0 if (x,y) =(0,0)
2
it (X, #(0,0
10fxy) | xZeyz 0V OO
0 if (x,y) = (0,0)

§88888888888

79



Chapter 3 Functions Of
Several Variables

4- Partial Derivatives

4 .1 First Order Partial Derivatives

As in functions of single variable f(x), the derivative f'(x) is defined as,

f(x +h) — f(x)
- .

f'(x) = lim
h—0
An analogous procedure can be applied to functions of several variables, we can obtain

partial derivatives for the function of several variables with respect to each independent

variable.

Definition : 4

Let f(x,y) be a function of two variables, the first partial derivatives of i

f(X,y) with respect to x and y are the function f, and f, defined by :

f(x + h,y) — f(Xx,y)

0 .
fo= —F(xy) = |
o= 2 flxy) = lim

—0 h
f,= Cf(xy) = lim 1Y M = T00Y)
h—0 h

In the definition of f, ,y is held fixed, only x is allowed to vary. If x is fixed and the only

y is allowed to vary, then f, is the derivative with respect to y.

We calculate S—f by differentiating f with respect to x in the usual way while treating y as a
X

constant, and we can calculate g_f by differentiating f with respect to y in the usual way
y

while holding x constant.

The definitions of the partial derivatives of functions of more than two independent variables
are like the definitions for functions of two variables. They are ordinary derivatives with
respect to one variable.
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Example : 14
Find the first partial derivatives of the following functions
M f(x,y) = x3y2 — 2x2y+3x + 2y +1.
(i) z =xy?eY , (i) w =xy?z3
Solution
(i) f (%, y) = 3x?y? — 4xy + 3
fy(x,y) = 2x3y — 2x% + 2.

(ii) ? = xy?yeY +y?e¥ = (xy® +y*)eY
X
o _ xy? xe¥ + 2xye¥ = (x2y? + 2xy)e¥
oy
ow 2.3 oW 3 oW 2.2
) — = z°, — = 2Xyz7, — = 3Xy“z
(iii) Pl p y pe y
§888888588888
Example : 15
Find the first partial derivatives of the following functions
. . . X
@) f(x,y) =ysinxy. , (i) f(x,y) = Xy
Y + COS X
Solution

. of
(i) = = (cosxy) (y) = y? cosxy

of . )
a— = y (cosxy) (X) + sinxy =Xy cosxy + sinxy
y

(ii) of (y+cosx)(y)—xy (-sinx) y2 + Y COS X + Xy Sin X

ox (y + cosx)? (y + cosx)?
of _ (y+cosx)(x) - xy@@) _  Xcosx
oy (y + cosx)? (y + cos x)?
§88858888888
Example : 16
Find S—Z for the function z defined in terms of x and y by the equation,
X
yz—Inz=x+y
Solution
0 0
—I(yz-Inz) = —(x+
Y ) = o x+)
or _1loz =1, ie. (y—ljE =1.,Then 2: z
OX 7 OX Z) OX oX yz-1

§88588888888
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4-2 Higher Order Partial Derivatives.

Higher order partial derivatives may be defined in a similar way, provided that the
earlier ones are functions of (x,y) and are continuous at the point under consideration. This

second partial derivatives of f(x,y) are defined as follows.

oo ety o oo o ..
¥ GX(ax) "o~ = ’ay(ax] ayox ~ By =y
iy wr oy sgm s

. G_X(@J - axoy (fy)x e 5(5] o2 (y)y =Ty

The second partials derivatives f,, & f,, are called mixed partials derivatives and

the following theorem illustrate their relations

Theorem : 2 Euler's Theorem ( The Mixed Derivative Theorem)

If £(x,y) and its partial derivatives f,, f,, f,, and f,, are defined throughout

i anopen region containing a point (a,b) and are all continuous at (a,b), then
1:xy(a’ b) = fyx (a, b)

Example : 17

Find all second partial derivatives of the function: f(x,y) =X’y + x?y® + xy
Solution

X =3y +2xy +y, q=fy=X3+3x2y2+x
OX oy
ot o (of 3
=S ==]=|=6 2
o= 2= 2T —exyay

2
yxzafzig =3x% + 6xy?+1
ox oy ox\ oy
o°f a(af
fay =~ = —| —
oyox oyl ox

0% f o ( of 5
fyyzayz za(aj = 6x7y

Note that in the above example, the partials derivatives f,, & f, are equal.

) = 3x? +6xy2+1

§58888888888
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In the same way the third and higher partial derivatives can defined, for examples

O3 o' f
ox 62y yyX 82X 6‘2y YYXX
Example : 18
2 2
If w=cos(x—y)+In(x+y),show that: a_v;/ - a—vgzo
0 X oy
Solution
a—W:—sin(x—y)Jr 1 , a—W=Sin(><—3/)+
OX X+Yy ay X+y
azw——cos(x—Y)— L aZW——COS(X—)/)— :
X2 x+y)? oy? (x+y)*
2 2
LHs =2W _ oW
O0X oy

- | _ _ _ 1 _ | _ _ _ 1 = =
_( cos(x—Y) (x+y)2j ( cos(x—Y) (x+y)2J 0 = RHS.

8885888588888
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Exercise (3-3)

(1) Find all the first partial derivatives of the given functions,

@ f(x,y) =3x3y + 2xy? 2 f(x,y) = JVx + 4Jy -10

() (X, y) = X% +y? (4)f(x,y)=cos xy-+sinx? +e?¥

(5) f(x,y,2) = xcos(y/z) (6)f(X,y) =xsiny—ytanx+xy

(7) f(x,y,2) =sin! (xyz2) (8)f(x,y):3{/ﬁ—2x2y3 +3/xy?

(9 g(r,s, t) = rssect (20)f(x,y,z) = x cosyz—ysinxz
Xy

(11) f(x,y) = (12)f(x,y,2) = xye¥* — Inxyz

ysin x

(1) Find the required partial derivatives at the indicated points

@ W:x2+y2—2xycosz. a—W(O,l, 7/ 6)
00X 0z
2
(2) w=xzeY —yze* +xye’. a—W(O, 1, n/6)
00X 0z
2 2 2
@ ux,y, z2) =7, OU q3,1)
Xz 0y OX
3 2 2
@) u(x,y,2) = X0 TU 2,2,1)
y z 0y OX
. o3f
5) f(r,s, t) = e" sint, 3,1,0
®) T ) 8r8tas( )

(1) For the following functions, confirm that the mixed second order partial derivatives are

equals,
@ f(x,y)=In(2x +3y) 2 f(x,y)=xIny + e* + yInx
3) f(x,y) = xy2 - x2y+x3 y4 @A f(x,y)=xIny + e + ylInx
5) f(x,y) = xcoshy+x23inhy 6) f(x,y) = y2 Inx + x?eY
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(IV) Show that u(x,y) and v(X,y) satisfy the Cauchy-Riemann equations:

ou ov ou oV

— =— and — =- —

ox 0oy oy 0X

@ u=x*-y*; V=2Xxy

(2) u=eXcosy; v = e siny
3 u=lIn (x2 + y2) ; v=2tan! y /X

(V) Show that the following functions satisfy the two-dimensional Laplace equation:

o 0%

5+ —5=0

0X oy

@) f(x y)=e? cos2x , (2) f(x,y)=Inyx? +y?.

(VI) Show that the following functions satisfy the third-dimensional Laplace equation:
o’f oM 0%

+ + =0
ox? ay2 0z

Q) f(x vy, 2)=x%+y?-22° . (@ f(x,y, z)=e¥" cosb5z

8888888588888
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5- The Increments And Differentials

If w="F(x,y) is a function of two variables x and y, then the symbols Axand
Ay denotes increments of x and y respectively. In terms of increments, the partial derivatives

may be written as,
f(x + AX,y) — (X, y)

f.(x,y) = |i

ey = Im, AX

fy(x’y) = lim f(X, y + Ay) - f(X, y) .
Ay—0 Ay

The increment Aw represents the change in the function value if (X, y)changes to
(X + AX, Yy + Ay), then the increment Aw of w = f(X, y)is, Aw=f(x + AX, y + Ay) — f(X, y)
Definition : 5

(Let w = f(X,y), and let Axand Ay denotes increments of x and vy, respectively, )

(1) the differentials dx and dy of the independent variables x and y are -
dx = Ax and dy = Ay

(2) the differential dw of the dependent variable w is,

oW ow
dw =f (X, y)dx + f,(x,y)dy= —dx + —d
x (X, Y) y (X, y) dy < Y y

0
If w = f(X,y,2), then, the differential dw of the dependent variable w is,
dw = @dx + @dy + @dz
OX oy 0z

where dx, dy and dz are the differentials of the independent variables x, y and z.
The extension to functions of more variables is similar.

Example : 19
If w=3x?-— xy , find dw and use it to approximate the change in w if (x, y) change

from (1, 2) to (3.01, 1.98). How does this compare with the exact change in w?

Solution

dw = %dx + @dy = (6x —y) dx + (—x) dy

OX oy

Substituting, x =1, y=2, Ax=0.01 and Ay =—0.02, we obtain

dw = (6 - 2) (0.0) + (-1 (-0.02) = 0.06
To obtain the exact value,

dw = w(1.01, 1.98)— w(l, 2)

= 3(1.01)% — (1.01)(1.98)- 3(1)? +(1)(2) = 0.0605

Error = 0.0605 — 0.06 = 0.0005

§58888888888

86



Chapter 3 Functions Of
Several Variables

Example : 20
The radius and height of a right cylinder cone can be measured to be 12 and 36 cm

respectively. If the measurement is accurate to within +0.05. Approximate the maximum
possible error in the calculated volume of the cylinder.
Solution

The volume of the cone: V = % n r?h . The differential of V is:

or

Y oV 2

dv ar + Mdh = 2arhdr + Sxr2dh.
oh 3 3

The possible error in the radius measurement is: dr = +(12) (0.0005) = + 0.06

The possible error in the height measurement is: dh = +(36) (0.0005) = + 0.18

Therefore, the maximum error in computing the volume is approximately,
dv= % (1) (36) (10.06)%71(12)2 (+0.18) =+ 81.4 cm®.

§88588858888

Example : 21
3.01

Calculate the approximate value of (1.02)*"".
Solution.
Consider the function: z = x¥,with, x=1 and y =3, and
dx =0.02 and dy = 0.01, then,

0z 0z _
dz = Zdx + Zdy=yx¥tdx + x¥ Inx d
x oy y=Y Yy

= (3) 1?(0.02) + ()°In(1) (0.01) = 0.06
Hence, z=(.02)%"= 2z, + dz = ()°® +0.06 = 1.06

§88588858888
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Exercise (3-4)
() Find the differentials for the given functions
(1) z=x*—3xy+Vy (2 z=x+x%y2 —y® (3) z=tan* (X°y)
(4) z=¢sintx3 (BYw=xy’Inz (6)w=xy Inz+xz Iny

(7Yw=xcosy+ysinz (8) w=zsinh™ x+xsech™y

(I1) Approximate the change in the function f as the independent variables changes from P
to Q.
@) f(x,y) = x2 + 2xy — 4x, P 2), Q(1.02, 2.04)

2 f(xy) = x1® yt2 P8, 9), Q(7.78,9.03)
@) f(xy) = Xx+yy, P(L 2), Q(LOL 2.02)

(4) f(x,y,2) = Vx + \Jy +z P(14,9), Q0.97,4185)
®) f(x,y,2) = xy +yz +xz P(12,3), Q(0.8,2.05,2.96)

(1) Use differentials to approximate the given problems

(1) Estimate the value of sin 897 cos? )
180 180

(2) Estimate the value of tan? Br :
180

(3) Estimate the value of J101.2/%/26.3

(4) Estimate the value of +/81.1 x ¥/7.8

(5) The dimensions of a rectangular parallelepiped are measured as 6, 2 and 5 inches
with possible error in measurement of 1/2%. Approximate the maximum error in
computing the surface area.

(6) Calculate the approximate value of +/(9.02)° /(4.03)°

(7) Calculate the approximate value of (3.02) x (0.97)°
(8) Calculate the approximate value of (4.02)%/ (3.97)

(9) Calculate the approximate value of \/(4.05)2 + (2.93)2

§88888888888
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6- Chain Rules and Implicit Differentiation

6.1 Chain Rules

In the first course of “Calculus” we considered the differentiable functions y = f(x)

and x = g(t), then the chain rule is, ﬂ = ﬂ d_X
dt dx dt

The analogous for functions of two or three variables is given in the following theorems

Theorem :3 (Rulel)

S If z="f(x,y) and x=x(t), y=y(t) are all differentiable functions,
dz _zdx  azdy .
dt  ox dt oy dt

" then

Similar statements hold for functions of three or more variables, in fact if,

w = f(X,y,z,...,s) is a differentiable function of any number of variables, and each

variable, is differentiable function of one variable t , then
dw  ow dx ow dy ow ds
—_— = —— 4+ — = 4+ ...+ — —.
dt ox dt oy dt os dt

Example : 22

Find —— for the following functions

() fx,y)=x’y +e*Y, x=cost, vy-=4t>

@) f(x, y):tan_lxy, X =tant, y=1/t.
@) f(x,y,z)=sin(xyz), x=1/t, y=Int, z=t
Solution

: df of dx of d

(i) -2 = =2

_ + —_—
dt  ox dt oy dt
= (2xy +2eZ7Y)(=sint) + (x® — eXX~Y)(12t?)

3 3
=—8t3cost sint—2sinte?®t ~ 4" 112t% cos? t—12t2e208t ~ 4t
(i) ﬂzﬁd_erQd_y: y 2seczt + X 2[_—21j
dt  ox dt oy dt 1+ (xy) 1+(xy)c \t
tsec?t — tant
t? +tan’t
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df of dx of dy of dz
@y —=—"+ ==+ ==
d  ox dt oy dt oz dt

=Yyzcos(Xyz) (;—21) + Xz cos(xy z) Gj + Xy C0S(Xyz)
= cos(xyz) {_—32/2 L2 xy} = 1cos (Int)
t t t

888888888888

Theorem : 4 (Rule2)

. If z="F(x,y) and x =x(u,Vv), y =y(u,Vv) areall differentiable functions,
. then:

Q—Qa_x_kgﬂ _ 4+ — =
du  oxaou oy du oV

Once again, similar statements hold for functions of three or more variables, in fact if,
w = f(X,y,z,...,t) is a differentiable function of any number of variables, and each

variable, in turn, is differentiable function of any number of variables x = x(u,v,...,s),

y=yuv,..,s), . . ., t=t(,v,...5s),then for example,

aw _owox owdy  ow oz Lowa
du o&xou oy ou oz ou ot dul

This is the most general statement of the chain rule.

Example : 23
(i) z=x*y*+xsiny, x=u?, y = uv

i z=¢"In ) X—U2—20, —V2—2U
Solution

= (2xy® +siny) (2u) + (3x¥Y? + x cos Y) (V)
=7u®Vv® + 2usinuv + u®vcosuv
8z_azﬁx+8z oy

ov  0x dv Ay v

(2xy> + siny) (0) + (3x%y? + x cos y) (u)

=3u’v? + u®cosuv

90



Chapter 3 Functions Of
Several Variables

(||) gzga_x+ga_y:ex|ny(2u)+e_(_2)
ou OXx ou oy ou y

= v [Zu In(v®> — 2u) — 2 j

v —2u

a_zzg%+ga_y:ex|ny(_2)+e_(2u)
oV 0Xx 0v oy 0Ov y

= ! ¥ (—2 In(v? - 2u) + — 2 ]
Ve —2u
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Example : 24
If w=r? +sv+t> and r:x2+y2+22, s=xyz, v=xe’¥ and

t=yz%. Find @
0z

Solution
oW OW Or OW OS OW oV
oo B

— — +
0z

ow ow ot
or oz oS 0z oV ot oz
= (2r)(22) + v(xy) + s(0) + 3t%(2yz)

=4z(x%2 +y? +2%) +x%yeY +6y32°.
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Example : 25

If w = X =rcos®, y=rsin0. Show that:

2 2

2

1 (ow N ow _ 2e2%
rz2  or 06

2 2
g0Z v

Solution
a—W:Zrerzcosze +2re"sin?6 =2re",
or
Z—g:—Zre’zsinecose +2re" sinfcosd =0 ,
1({ow ? oW ?
| == =4e*", =1 =0
relor 06
1 (ow) (ow)
Then: LHS. = —| 20| + | Y| - 4" = RHS.
retor 00

§88888888888
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Example : 26
For a differentiable function f(x,y) with x=rcos6 and X =rsin6 , where
fyy and f,, are continuous, show that :

f, =f, cos6 +f,sind

2 : L2
frp = C0s”0 + f,y, cosO sind + f,ysin“ 6

Solution
. . 0X oy .
First, notice that, — = cos6 and —==sino.
or or
" :g = ?% + %% = fy cosO + f, sin® , Now,
r X Or r
of 0 .
" :a_rr = (fx cosO + f, sme)
[0 9%, 0 )2 219X, 2 ()Y | g
_[ax (fy) e +6y(fX) ar}cosej{ax (fy) e +8y(fy) arJsme

= (fxx cosO + f,, sin e)cose + (fyx cos6 + fy, sin e)sine

2 - L2
= fux c0s“ 0 + f,, cosO sin® + f,, sin” O

§88588858888

62 Implicit Differentiation

Partial derivatives can be used to find derivatives of functions that are determined
implicitly. Suppose, an equation F(x, y) = 0 determines a differentiable function f such that

y = f(x) thatis, F(x, f(x))= 0 for every x in the domain of f. Let us introduce the following
composite function F: w = F(u,y) where u=x and y= f(x)
Using the first rule of chain rules and the fact that u and y are functions of one variable x

. dw ow du ow dy
yields, —=—— + — —
dx ou dx oy dx

Since w = F(x, f(x)) =0 for every x, it follows that dw/dx = 0. Moreover, since u

—xandy y =00, M1, and Yo
dx dx
Substituting in the preceding chain rule formula for dw/ dx, we obtain,
ow ow
0=— (@0 + —f'(x
Y @ Y (x)

If ow/oy =0, then (since u = x),
_ow/eu  aw/ax _ R(xy)
ow /oy ow /oy Fy(X,y)

dy
fI = — =
() dx
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We may summarize the preceding discussion as follows.

Theorem : 5

R T e L D L L m T

If an equation F(X, y) =0 determines, implicitly. a differentiable i

% function f of one variable x such that y = f(x), then, dy _ _hdxy)
dx Fy(X,y)

Example : 27
Find dy/dx if y =f(x) is determined implicitly by,

(i) y* +3y —4x®> =5x—-1=0 , (i) y®> —=3xy = 5x°y®
Solution
(i) F(x,y)=y*+3y—4x® —5x -1

d_y__FX(x,y)_ ~12x2 -5 12x%+5

dx  F(xy)  4y3+3  4y®+3

(i) F(x,y)=y® —3xy — 5x2y?
dy  F(xy)  -3y-10xy*  3y+10xy’

dx  Fy(xy)  3y?-3x-10x2y 3y2-3x-10x’y

8885888588888

In analogy with the single-variable case, we say that the function z = f(x,y) of two

variables x and y is determined implicitly as follows.
* Define the composite function F(x,y,f(x,y)) =0 as,
w =F(u, v, z) whereu=x, v=y, z=7f(XYy)
** Apply the second rule of chain rules,
W _ow o ow v, ow e
OX OU OX oV OX 0z OX

Which may be written as, 0= ol @ + w (0) + w o
OX oy 0z OX

and if ow/éz = 0, then oz __owlox _ K(xy.2)
X ow/ oz F,(X,y,2)

The formula for ow/dy may be obtained in similar fashion.
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Theorem : 6

" If an equation F(X, Yy, z) =0 determines, implicitly. a differentiable

function f of two variable x and y such that z = f(x,y) then,

oz KR(xy.2) a_  RKxy?2)
ox  F(xy2) o  F(xy.2)

Example : 28
Find 6z/ox and oz/oy if z =f(X, y) is determined implicitly by,
x2 22 +xy2 ~z3 +4yz-5=0
Solution

F(X,y,2) = x2z% + xy2 - 78 +4yz -5

oz _ Fo(X,y,2) 2x2% + y2

OX FR(y.2) 2x%z - 3z2%+ 4y

a_ R&yz  2xy+4z
oy F,(X,Y,2) 2x2z —3z%+ 4y
§58888888888
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Exercise (3-5)

() Find Z—Vtv for the following functions,

@) w=x%y — 3y?; Xx=3t+1, y=t>
(2)W:In(x2+y); X =4t y=’°;/t—2
B w=e*y; x=Int, y=3t?
(4) w=3cosx — sin Xy ; x=1/t, y=3t

(5) w=tant xy ; X =tant , y=1/t

(6) w:\/1+ y+3xy22; x=Int, y:tz, z=2t

(7) w=x2y + eV x =cost, y=4t3
(8) w=xsiny +ycosz + e ; x=1, y=t?, z=Int
(9) w=sin (xyz), x=1/t, y=Int,z=t
10) w =sin! xy ; x =sint , y=1/t
(11)W=\/x2+y2+22; Xx=cost, y=sint,z=t
ind — and — for the following functions,
(||)F'o|2Z dzzf he following functi
u v
(1)z:x2y3+xsiny; X =u?, y =uv
(2)z:x3+xy+y3; X=2u, y=3v
B z=¢" Iny; x=u?-2v, y=v?—2u
(1) Finda—w,z—w, and %—‘;" for the following functions
S

@ W=x2y32+xyz2 ©ox=r2 452, y=rst, Z=r+s+t

2

(2) w=e*Y? +In(x+y+2); X=r-s, y=r+t, z=rst

3 w=x2 +y2 +2°2
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(V) For a differentiable function f(x, y) with x =rcos® and x = rsin© and where

fyy and f,, are continuous, show that:
(1) fg =—f,rsin6+f, rcosd

(2) foo = f r2sin%0 — 2f r2cosO sin @ + fuy r? cos’ 0

—fyrcos® —f, rsin®

(V) Find j_y it y=1f(x)is determined implicitly by the following equations
X
(1) ¥*+6xy=5y"-3 ) x3 -2xy? +y® =sinx
(3)e*=tany @) Inx3 +eY¥ = sinhx
(5) xsiny—ycosx=0 (6) xe’ +ye* =x°y
(VI) Find S—Z and Z—Z if z="1(x, y) is determined implicitly by the following equations
X y
(1) 42* =2 xy*-37% (2) xe¥? —2ye® +3ze¥ =1
B)xe¥+ye¥=z (4) yx? +z%y +cosxyz =4

(VII) (a) Showthat z =e**2Y) 4+ In(x? + 4xy + 4y?) | satisfies the equation:

@ 282

oy ox
(b) Show that any differential function z = f(x,2y) will satisfy the previous equation.

§88888888888
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7- Directional Derivatives And The Gradient

7-1 Directional Derivative

The derivative of a function f(x,y) at a point P(Xg, yg) in the direction of a unit
vector u = uqi + U, j is defined by,

f(Xo +tug, Yo +tuy) — F(Xg, Yo)
t ]

D,f(Xo. Yo) = t"_r>no
provided the limit exist.

This derivative is called the directional derivative of the function f(x,y) at a point
P(Xg, Yo) in the direction a unit vector u = uqi + U, j.

Now we may consider the partial derivative of /ox as the directional derivative in the

direction of x-axis (u=1i+0j) while the partial derivative of /oy as the directional derivative

in the direction of y-axis (u=0i+1j).
The following theorem provides a formula for finding directional derivatives.

Theorem : 7

If fis differentiable function of two variables and u =uqyi+u,jis i

aunitvector, then : D f(x,y) =f, (X,y)u; +f (X, y)u,.

Example : 29
Find the derivative of the function f(x,y)=x*y® +x*y at the point P(2, —1)in the

direction of the vector a =i+ 2j.

Solution
The vector a is not a unit vector. The unit vector in the direction of the vector a is
u=alla] =. u='*A_1;, 2
1+4 5 V5
fy (X, y):4x3y3 +3x2y, f.(2,-1)=-44
fy(x y) =3x"y? + x°, f (2, -1) =56.
1 2 68

D,f(2,-1) =(-44)—= + (56)—= = —=.

! J5 J5 5

§58588888888
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Example : 30
Find the derivative of the function f(x,y) = x2 + Xy at the point P(1, 2)in the
direction of the vector a = (l/\/i)i + (1/\/§)j.

Solution
The vector a is a unit vector.

fu(x, y)=2x+y , f,(L2)=4
fy(xy) = x . f,12)=1.

1 5

tmm=wﬁ+m%=ﬁ

For the function of three variables f(x,y,z), the directional derivative of f at a point

P(X,Y,z) in the direction of a unit vector u =uqi + U, j+ uzk,

Example : 31
Find the derivative of the function f(x,y,z) = x?z3 + y3 z at the point P(4, 1, 1)in
the direction of the vector a =i+ 2j+2 k.

Solution

The vector a is not a unit vector. The unit vector in the direction of the vector a is
i+ 2j+2k 1.2 2

u=alla| > u=—"=Zi+Zj+ k.
J1+4+4 3 3 3

fo (X, y,2) = 2x2° , f L1 =2

f,(x y,2) =3y*z , fy(L11)=3.

f (X, y,2) =3x%2°% + y3 , F,011)=4

D,f(LL1) = (2)% + (3)% + (4)% = % = 5.3333333

§88888888888
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7-2 The Gradient

We may express a directional derivative as a dot product of two vectors, as follows:
Dyf(xy) = (F ) T+ F, (¢ Y) ) (uyi +uz )
or D, f(x,y) = (f, (%,¥), fy (x,¥)) o (ug, u)
The vector in the first bracket, whose components are the first partial derivatives of f (x,y), is

very important. It is denoted by V f (x,y) and is given the following special name.

Definition : 6

Let f be a function of three variables. The gradient of f(x,y,z) is the vector

function given by, Vf(x,y,z) = f,(x,y,2) i +f,(x,y,2) j +f,(x,y,2) k

Now the directional derivative may be written as a dot product of the gradient vector

V£(x,y) and direction unit vector u = (u,, u,) as,

Example : 32
Find the directional derivative of f(x,y,z)=x° —xy2 —z at P(1, 1, 0)in the direction

of a=2i-3j+6k.
Solution
2i-3j+6k 2.
Jaro+38 7

The gradient of f at P is, Vf(x,y,z) = (3x2 —y?, —2xy, —1)

vi(@11,0) = (2, -2, -1)

The directional derivative of f at P in the direction of a is therefore,

D,f(LLO) = (2 —2, _1).(5,‘73,% :;

§88888888888

The unit vector in the direction of a is, u = — %j + gk
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Exercise (3-6)

(I) Find the directional derivatives at point p in the indicated directions.

M fooy) =x2+y2,  P@L1), a:%i +%j
() f(x,y) =2xy -3y%, P(55), a=4i+3j
@) f(xy) =ev | P(-1 3), a:@' +%j

@) f(x,y)=tan'y/x, P(4,-4), a=2i-3]j

() f(x,y) =xy +tany, P(-1 n/4), a=i-3]

6) f(x,y)=x°Iny, P(5,1), a=—i+4]

@) f(x,y,2)=xy +22, P(-2,13), a=i-2j++/5k
@) f(x,y,2) =xy3z2, P(2-14), a=i+2j-3k

9) f(x,y,z) =40 — xyz, P(3, 0,1, fromP toQ(1,1,1)

A0)F(X,y,2) = X% +y?+z% |, P(=2, 3,1), from P to Q(0, -5, 4)

8888888588888
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8- Applications On Derivatives

If r=g(t)i+ h(t)j+ k(t)k isasmooth curve on the level surface f(x,y,z) =c of
a differentiable function f, then f(g(t),h(t),k(t)) = c. Differentiating both sides of this

equation with respect to t leads to,

d d
5 FEORO.KD) = ©

of dg  of dh of dk _

ox dt oy dt oz dt
ﬁi+ﬂj+qkod—gi+@j+%kj:0
ox oy 0z dt dt dt

vf dr/dt
At every point along the curve, V f is orthogonal to the curve's tangent vectors.

8-1 Tangent Plane And Normal Vector

Now let us restrict our attention to the curves that pass through P . All the tangent

vectors at P are orthogonal to Vf at P, so the curves' tangent lines all lie in the plane through
P normal to Vf . We call this plane the tangent plane of the surface at P. The line through P

perpendicular to the plane is the surface's normal line at P.

Definition : 7

The tangent plane at the point P(X,, Y,, z,)on the level surface
f(X,y,z) = c is the plane through P normal to V f|p.

"~ The normal line of the surface at P is the line through P parallel to V f|p.

Thus, the equation of the tangent plane is, (Vf(Xo, Yo, Zg))® ((X =Xg, Y = Yo, Z — Z5)) =0

Or

fy (X0,Y0,20) _ fy(X0,Y0,20) zfz(X07yOvZO)
(X—=Xq) (Y—Yo) (z-2¢)
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Example : 33
Find the equations of tangent plane and normal line of the surface X2 + y2 +z-9=0
at the pointP(Y, 2, 4).
Solution
f(x,y,2) = x2 + y2 +z-9
vi(x,y,2) = (2%, 2y,1), ViL2,4)=(2 4,1)
Then, the equation of the tangent plane :
fx (X0,¥0:20) (X=X0) +F5 (X0, Y0.20) (Y —Y0) +f2 (X0, Y0, Z0) (2—Zp) =0
Ie. 2(x-1)+4(y—-2)+1(z—-4) =0, 0or 2x+4y+z=14
and the equation of the normal line,

fy (X0,Y0:20) _ fy(XO’yo'ZO) =fz(X0’y0’ZO)

(X=Xp) (Y—-Yo) (z-2p)
. 2 4 1
|.e. = =
x-1 y-2 z-4
885885885888
Example : 34

Find the equations of tangent plane and normal line to the ellipsoid % x2+3y?+7% =12

at the pointP(2, 1, \/E) .
Solution

f(x,y,2) = %x2+3y2+z2 - 12

Vi(x,y,2) = (gx 6y, 22), Vf (2,1,4/6) = (3, 6, 2\/6)

Then, the equation of the tangent plane ,
3(x—2)+6(y-1)+2/6(z—-~6)=0, or 3x+6y+2/6z=24
6 2.6

and the equation of the normal line, S __ =
Xx-2 y-1 z-.6

§88888888888
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8-2 Extrema Values And Saddle Points

To find the local extreme values of a function of a single variable, we look for points
where the graph has a horizontal tangent line. At such points we then look for local maxima,

local minima, and points of inflection. For a function f(x,y)of two variables, we look for
points where the surface z = f(x,y)) has a horizontal tangent plane. At such points we then

look for local maxima, local minima, and saddle points.

Definition : 8

i.L Let f(x,y) be defined on aregion R containing the point (a, b). Then i

1. f(a,b) is alocal maximum value of f if f(a,b) >f(x,y) for all
domain points (X, y) in an open disk centered at (a, b).

2. f(a,b) is alocal minimum value of f if f(a,b) < f(x,y) forall
domain points (x, y) in an open disk centered at (a, b).

3. f(a,b) isa saddle point value of f if there are domain points

(X, y) where f(x,y) > f(a,b) and domain points (x, y)where

iﬁi f(x,y) < f(a,b) in every open disk centered at (a, b). 3:3?
o

As with functions of a single variable, the key to identifying the local extrema is a first

derivative test.

Theorem : 8

If f(X,y)has a local maximum, local minimum or saddle point value at
an interior point (a, b)of its domain and if the first partial derivatives exist there,
- then f,(a,b) =0 and f,(a,b) =0

Definition : 9

An interior point of the domain of a function f(x,y) where both f, and f,are ..

zero or where one or both of f, and f, do not exist is a critical point of f.
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Thus, the only points where a function f(x,y)can assume extreme or saddle points values
are critical points and boundary points.

The fact that f, = f, =0, at an interior point (a, b)of R does not tell us enough to be

sure f has a local extreme value there. However, if f and its first and second partial

derivatives are continuous on R, we may be able to learn the rest from the following theorem.

Define the function: F(x,y) = f f ffy which is called the discriminate of f. It is

yy =

sometimes easier to remember the function F(x,y) determinant form,

f f
F(X, y) = T fyy — T2 = fxx fyx
xy lyy
Theorem : 9
e Suppose f(x,y) and its first and second partial derivatives are continuous ..

-4 throughout a disk centered at (a, b)) and that f, (a, b) = f,(a, b) =0. Then

i) f hasalocal maximum at (a, b) if: f,, <0 and F(x,y) >0 at (a, b)
i) f has alocal minimum at (a, b) if: f,, >0 and F(x,y) >0 at (a, b)
iii) f has a saddle point at (a, b) if : F(x,y) <0 at (a, b)

iv) The test is failed if :  F(x,y) =0 at (a, b)

Example : 35
Find the local extreme values of f(X,y) = xy.
Solution.
The function is defined and differentiable for all x and y and its domain has no boundary

points. The function therefore has extreme values only at the points where f, and f, are

simultaneously zero. This leadsto, f, =y=0 and f, =x=0

y
Thus, the origin is the only point where f might have an extreme value. To see what
happens there, we calculate

fo =0, fo,=0  fo =1

yy xy
FX, y) = T fyy — Ty = 1< 0
Therefore the function has a saddle point at (0, 0), has no local extreme values.

§88588888888
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Example : 36
Find the local extreme values of
f(X,y) =xy —x% —y? —2x — 2y + 4.
Solution

Since f is differentiable everywhere, it can assume extreme values only where,
fu=y-2x-2=0and f,=x-2y-2=0

Thus, the point (-2, —2) is the only point where f may take on an extreme value.

F(X, y) = fi fyy — Ty =3 >0
Then, f,, =-2 <0 and F(X,y)=3>0

Therefore the function has a local maximum at (-2, —2).

§88588858888

Example : 37
Find the local extreme values of: f(Xx,y) = x2 — 4XYy + y3 + 4y

Solution
Since f is differentiable everywhere, and,

fu=2x—4y=0 and f, =—4x+3y* +4=0.
Solving this system, we find that f has the two critical points (4,2) and (4/3,2/3). The
second partial derivatives are,
f (X, y) =2, fyy(xy)=6y , fyxy) =-4

F(X, y) = fix fyy — T = 12y — 16

(a,b) F(a,b) f. (a,b) | Conclusion

(4,2) 8>0 2>0 f(4,2)=0 is a local min.
(4/3,2/3)| -8<0 -

f(%,%)zl.lQ is a saddle point

§58888888888
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Example : 38
Find the local extreme values of: f(x,y) = x> + y® —3x —12y + 20

Solution

Since f is differentiable everywhere, and,
f, =3x*-3=0 and f, =3y’ -12=0.
le. x=+1 and y=+2
We find that f has the four critical points,
@2, (-12), ¢ -2) and (-1 -2).
The second partial derivatives are,
fu (X y) =6x, f (x,y)=6y , f(x,y)=0

F(X, Y) = fi Tyy — Ty = 36 Xy

(a,b) F(a,b) f_(ab) Conclusion
@ 2) 72>0 6 >0 f(1,2)=2 is a local min.
(-1 2) -72<0 - f(-1,2)=6 is a saddle point
@ -2 -72<0 - f(1,—2)=34 is a saddle point
(-1, -2) 72>0 -6 <0 | f(-1,—2)=38 isa local max.
555585555555

8-3 Constraints And Lagrange Multipliers

We sometimes need to find the extreme values of a function whose domain is constrained
to lie within some particular subset of the plane
Here, we explore a powerful method for finding extreme values of constrained functions:

the method of Lagrange multipliers.

Theorem : 10 ( Lagrange’s Theorem )

(TTTTTTTTT T TR T T TR

Suppose f and g are functions of two variables that have continuous first -

i partial derivatives, and that Vg = 0 throughout a region of the xy-plane. If f has an ..
-1 extremum f(a,b) subject to the constraint g(x,y) =0, then there is a real number

A such that, Vf(a,b) =AVg(a,b)
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The points at which a function f of two variables has local extrema subject to the

constrain g(Xx,y) =0 are included among the point (x,y)determined by the first two

coordinates of the solution (x,y,A) of the system of equations,

f (X y) = Agx(xy), fy(x,¥)=2rgy(x,y), 9(x,y) =0.

The Lagrange’s Theorem (3.8.3) may be extended to the function of three variables x,
Yy, Z. In this case, we solve the system,
fx(X,y,2) = L9y (X,y,2)
fy(X,y,2) = A9y (X,y,2)
f,(X,y,2) = Ag,(X,y,2)
9(x,y,2) = 0

Some applications may involve more than one constraint. In particular, consider the problem

of finding the extrema of f(Xx,y,z) subject to the two constraints,
g(x,y,z) = 0 and h(x,y,z) = 0.

Then the following condition must be satisfied for some real numbers A and x such that,
VI(X,y,2) = AVg(X,y,z2) + uVh(x,y,2)

And we solve the system,

fu (X, y,2) = A5 (X,y,2) + phy(X,y,2)
fy(X,y,2) = A9y (X, y,2) + phy(x,y,2)
f,(xy,2) = 19, (XY, 2) + ph,(X,y,2)

g(x,y,2) =0
h(x,y,z) = 0
Example : 39

Find the maximum and minimum values of the function: f(x,y) =3x + 4y on the
circle x? + y2 =1
Solution

Let f(x,y)=3x + 4y and gix,y) =x2 +y2 -1
The system,

fu(Xy) = Agx(xy), fy(x,y)=2gy(x,y),  9(xy)=0.
Leads to the equations,

3=21x, (1) 4=2%y, (2) x?> +y? =1 (3)

3

2 o
From (1),(2), x=—, = — . Substituting into (3),
1).(2) IR g (3)
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We obtain A:J_é and so, x=i§, y:iﬂ
2 5 5
(x,y) (3/5,4/5) | (-3/5,-4/5)
f(x,y) 5 -5

Then f (2 g] = 5 isalocal maximum.

and f (?3 gj = -5 isalocal minimum.

888888888888

Example : 40
Find the extrema of f(x,y) = xy if (X, y)is restricted to the ellipse 4x2 + y? =4
Solution

Let f(x,y)=xy and g(x,y)= 4x° + y2 -4
The system,

fr(Xy) = Agx(xy), fy(x,¥)=2rgy(X,y), 9(x,y) =0
Leads to the equations,

y=8AX%, () X =21y, (2) 4x? +y2 =4 (3
From (1),(2), X =16x2? or X (1— 162%)=0
Therefore either x=0 or A =x1/4
If x=0,thenfrom(3), y=+2
If A=x1/4, then from (1), y=84Ax = 8x(£1l/4) =+ 2Xx.

Substituting into (3), 8 X2 =4 or x=t % and y=+ V2

Now :

f(0,£2) = 0, [T i\/_j f(%,?ﬁj=_

Thus, f(x,y) = xy takes on a maximum value of 1 at either (% \/Ej or (

.. 1 -1
and a minimum value of -1 at | —, —\/5 or | —, \/Ej
(Ji J (ﬁ

§58888888888
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Example : 41
If f(x,y,z) =4x? + y? + 5z2. Find the point on the plane 2x + 3y + 4z =12 at
which f(X,y,z) has its least value
Solution
Let f(x,y,z) = 4x?% + y2 +5z2  and g(X,y) =2x + 3y + 4z - 12
VI = (8x, 2y, 102), Vg=(2 3, 4)
This leads to the equations,
8x=2A () 2y=3% (2) 10z=4x (3) 2x+3y+4z=12 (4)

From (1),(2), (3), K:4x:§y=gz, or y=6x, Z:gx

Substituting into (4) , 2x +18x + 3—52x = 12
5 30 8
= —, y =—, 7 =—
11 11 11
Since there is only one critical point, it follows that the minimum value occurs at that point,
(5/11,30/11,8/11).

Therefore , X

§88588858888
Example : 42
Find the shortest distance between the origin and the surface: z=xy + 1.

Solution
Consider the point (x,y,z)on the surface z= xy + 1. The distance between the point

(X,y,2) and the origin is, d = X2 + y? + z2 .

Now , we can restate the problem as, find the minimum value of the function

f(x,y,2) = X% + y2 + 2 on the surface z=Xxy +1.

f(x,y,2) = X2 + y2 +z2

and 9(x,y,2)=z—-xy-1
Vi =(2x, 2y, 2z2), Vg=(-y,-X%, 1)
This leads to the equations,
2X==-Ay @) 2y=-Ax (2) 2z=7A, (3) z=xy+1 (4
From (1),(2), x-y)(A+2)=0, x=y or A=-2
Then from (3),(4), z=1 and x=y=0

Thus the shortest distance, d = x? + y2 +2% =1.

§88588888888
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Example : 43
The plane x +y + z =1 cuts the cylinder x2 + y2 =1 in an ellipse. Find the points

on the ellipse that lie closest to and farthest from the origin.
Solution

Consider the point (x,Yy,z) on the ellipse (the intersection of the above two surfaces).

The distance between the point (x,y,z) and the originis, d =+/x2 + y? + z2

We find the extreme values of : f(x,y,z) = X2 + y2 +z2 subject to the constraints:
91(va12)=X2+y2—1, g,(X,y,2)=x+y+z-1

The gradient equation then gives

VE(X,Y,2) = AV (X,Y,2) +uVga(X,y,2)
Then, (2x,2y,2z) =A(2x,2y,0) + (111

This leads to the equations,

2X=2AX+un (@ , 2y=2Ay+pun (20 , 2z=pn (3
x?2+y2-1=0, (4) , X+y+z-1=0 (5
From (3)in (1), (2), 2Xx=2AX+ 2z, 2y=2Ay+ 22, (6)

Equations (6) are satisfied simultaneously if either,

A=1 and z=0 or A=zland x=y=z/(1-1)
If z=0, then solving equations (4) and (5) simultaneously to find the corresponding points on
the ellipse gives the two points (1,0,0)and (0,1,0).

If x =y, then (4) and (5) give: x?> +x? —1=0,and X +X+z—-1=0

. 1
i.e. X=y=%+— and z=1%+2.
V2

Then we have four critical points,

1 1 -1 -1
P,=(10,0), P, = (0,1,0),Py=| —,——,1-~/2 |, P, = —,—,1+\/§j
1 ( ) 2 ( ) 3 [\/E \/E j 4 (\/5 \/E

d(P)=1, d(P,)=1, d(P;)=1.0824, d(P,) = 2.61313
Now, it is clear that the closest points to the origin are P;, P, and the farthest point from the

originis P,

§88888888888
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Exercise (3-7)

(I) Find the equations of the tangent plane and the normal line to the given level surfaces at
the indicated points.

M) x2+y*+22=4 st P(LLv2) L2 xP+2xy-yr+2=7 a P(-193
@ x2+y>-72%=1 ad  PLLY (@) x2-xyy*-z=0 a PLL-1
G) x?+y>-2z2=0 at PLLV2) ,(6) x+y+z=1 at P(0,10)
7 y = x? at P(2,4,0)

(1) Find a vector normal to the given level curves at the indicated points.

3 +y?=4 a (L1 , (2) 4x +y*=1 a (-2 3)
B x2 +y=0 a (2 -4

(11) Find all the local maxima, local minima and the saddle points of the following functions

@ f(x,y):x2 —3xy—y2 +2y-6 , (2) f(x,y):x2 + Xy +3X+2y+5
3) f(x,y) = x4 +y3 +32x — 9y , (4) T(X,y) =x3 —y3 —2Xy+ 6
(5) f(x,y) =cosx + cosy , (6) (X, y) =sinx +siny

(7) f(x,y) =e* siny , (8) f(x,y) =e? cosy

(IV) Use Lagrange multipliers to find the local extrema for the following functions under the

stated constraints

@ f(x,y):y2—4xy+4x2, x2+y2:1

(2) f(x,y)=2x2+xy—y2+y, 2x +3y=1

) f(x,y,2) =x+2y -3z, z =4x2 + y2

4) f(x,y,2) =X+ y + 2, x? +y2+ 2% =25
®) f(x,y,2) =xyz, X2 +4y% +2z2° =4
(6) f(x.y,2) =x* +y®+2%, x-y+z=1

@) f(x,y,z)=z—x2—y2, X+y+z =1 x2+y2=4

©®) f(x,y,2) =x?+y?+2%,  x-y=1 y>-27?=1
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(V) Find the point on the sphere: x*+y*+2z°=9 that is close to the point: (2, 3, 4).

(V1) Find the point on the space where the sum of whose coordinates is 64 and whose distance
from the origin is minimum.

(V1) A rectangular parallelepiped, with sides parallel to the coordinates axis and inscribes in

the ellipsoid: 16 x* + 4y® + 9z° — 144=0 , What dimension yield the largest volume.
p

§88588858888
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Chapter 4 Infinite series

CHAPTER 4

INFINITE SERIES

Series, in particular power series, play an important rule in mathematics. To introduce

the series, we begin with definition of a sequence and related concepts.

1- Infinite Sequences

Definition : 1

An infinite sequence (or sequence) of numbers is a function whose :.

domain is the set of integers greater than or equal to some integer.

Thus a sequence is a set of numbers u,, u,, us, ..., in a definite order of arrangement

and formed according to a definite rule. Each number in the sequence is called a term, the

term u, is called the nthterm. The sequence is called finite or infinite according as there is or

is not a finite number of terms. In this section we shall consider the infinite sequences only.

An infinite sequence or, briefly, a sequence is denoted by {u,}. In this chapter, the range of

the sequence will be a set of real numbers.

The graph of the sequence may be represented as a set of points (n, u, ) in the xy-plane.

Example :1
Represent the following sequences,

() {%} 0 {” : 1} (i) {3}

_ 1+l _
(iv) {( D 1)} ) fn - 1} wi) {2+ 1"

n
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Solution
n+l
(i) {(_1) } _, t1 11
2’3 4’5
(i) {” - 1} _o, 12314
n 2'3'4’5
(i) 3} = 3,3,3,3,3,
n+l
vy (ED =D 12 34
n 2'3" 4’5

SSSSSSSSSSSS

certain values (i, ii, iii, vi) and the others are not (iv, v).

definition.

114
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Chapter 4 Infinite series

Definition : 2

A sequence {u,} has the limit L or converges to L denoted by either i
lim u, =L or u,>Las n-—oo, ifforevery e > 0 there exista .-

n %w anaian

positive number N such that |a, — L| < &, whenever n > N. .

If such a number L does not exist, the sequence has no limit or diverges. i
NOTE

In example (1) above, sequence (i), (ii), (iii), (vi) are_converge to 1, 0, 3, 2
respectively while the sequences in (iv) and (v) are diverge.
The next theorem is important because' it allows us to use results from limit of

function of one variable to investigate convergence or divergence of sequences.

Theorem : 1

Let {u,} be a sequence. Let f(n) = u,, and suppose that i.i.
f(x) exists for every real number x >1.

(i) If lim f(x) = L,then lim f(n) = L and {u, }convergesto L.
X—>00 n—o0

=
e
=
=

Example :2
Determine whether the sequence {1 + 1} converges or diverges.
n

Solution
Let f(x) =1+ l for x > 1,then, Ilim f(x) = lim (l + Ej =1.
X X—>00 X—>00 X

n— o n

Hence, lim (l + l] = 1. Thus, the sequence {1 + 1} converges to 1.
n

SSSSSSSSSSSS
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Example :3
Determine whether the following sequences converges or diverges

NIV

Solution

x3 x3
(@) Let f(x):?—4 for x > 1, then, lim f(x) = lim ?—4 =

X—0 X—0

3

Hence the sequence {% — 4} diverges.

(b) The sequence {(—1)"*1} =1,-1,1,-1,1,. .. . Wesee that the terms of the

sequence oscillate between 1 and -1. Thus lim (=1)"" does not exist and the

n—ow

sequence {(—1)"*1} diverges.
(c) Let f(x) = 5x/ e?* for x > 1, then using L’Hopital’s rule we obtain,

lim f(x) = fim [2X | = 4im |—>— | =0
X —>00 x> | @2X x—w | 22X

Then lim (5_n j = 0, and the sequence {S_n} converges to 0.

n—s>o0 e2n e2n
Note that all theorems of the limit can apply to the function f(n) as n — oo to evaluate
lim f(n) directly.
n—o
SSSSSSSSSSSS
Example :4
Determine whether the following sequences converges or diverges

3n? —5n 3n? +2n 1+ 2.10"
@i —F—— (b) - ——— ©
2n +n_6 2n—1 4+310
Solution
3n2 —5n 3 -5/n 3

(@) lim ———— = lim = =,
n>w 2n24n-6 nox 2 +1/n - 6/n® 2

2 —
Thus the sequence 2 converges to 3 :
2N +n-6 2
2
(b) lim 3n +2n:|im 3+2/n w
nso 2n -1 nswo 2/n — 1/n?

2
Thus the sequence {32—+2n

} diverges.
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14210 . 10" +2 2
¢ lim ——MM— =Ilm —m— = =
n>o 44+310" now 410"+3 3

n

Thus the sequence 1+2100
4 +3.10"

} 2
converges to § .

SSSSSSSSSSSS

Definition : 3

Example : 5

The sequence {
n+1

} has the terms =, —,—,—,—,..., then for every n,

lug| <1. Thus for any positive real number M >1 , the sequence {nil} is bounded.
+

Definition : 4

/

If u., > uy forevery k, the sequence {u,} is called monotonic i
increasing, while if u,; > uy forevery Kk, itis called strictly increasing. e
Similarly, if, u,,; < uy for every Kk, the sequence is called monotonic
decreasing, while if u,,; < u, for every Kk, it is called strictly i
decreasing

NOTE
The sequence in example (5) is monotonic increasing and is bounded, so it is

converges. It is easy to prove the following theorem,
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Theorem : 3

Example : 6
Determine whether the following sequences converges or diverges

@) { [‘?Zj }

Solution
n n
-2 _ 2 < 1,then lim -2 =0,and -2 converges to 0.
3 3 nowo\ 3 3

(b) Since 1.03 < 1,then lim (1.03)" =oo,and | (L.03)" | diverges.

n—oo

(b) {(L0o3)" |

(@) Since

SSSSSSSSSSSS
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Infinite series

Exercise (4-1)

Determine whether the sequence {u,} converges or diverges where u, has the following

expression:

n
3n + 2

n? —2n+1
n-1

—5\"
)6 [?j

2n
) n+1

Ccos n

1)

(4)

(13)

(16) nl/n

19)/n+1 —vn

(22)(1 - i)
2n

(28) n+1

Jn

(31) 5n/e?"

2
(34) (3n +2n

2n? 1

|

n

(2) —]

5) n+7

n+ (-n"
n

(11 )(1+ 1)
n

(8)

, (14)n sin 1
n

2

n
, (17)3—n

, (20) 8n+1

,(23) (e‘“ In n)

, (29) ()"

(32) 2

n’>+9

3n2 +2n
- (39 [ﬁ}

SSSSSSSSSSSS

119

3) 1+ ("t

1-2n
1+ 2n

7 n
©) 8‘@
(12 SN0
n

(6)

(15) (-)" Inn
n

18) L+ 01)")

4
2n—-3
(21)(3n + 7}

(24) 27" sinn

(30) yn?—-n —n

2 —
(33) 3r21 5n
2N +n-6

n
(36) 1+2.10
4 +3.10"
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2- Infinite Series

An infinite series (or briefly, a series) is an expression of the form,
o0

a; +a, +asz+ ... +ay + ..., Orinsummation notation, a,orsimply X a,,
n=1

where a, isthe nth term of the series.

We can define a sequence {S,} such that :
S_]_:al, 82:a1+a2, 83:a1+a2 +a3,

o]
S, = Y a,=a +a,+az+ ... +a,.
n=1

0
The sequence {S, } is called the sequence of partial sums of the series Y a,
n=1

Definition : 5

o0
A series Y a, is convergent (or converges) if its sequence of partial sums

n=1
{S,} converges, thatis, lim S, = L, then L is the sum of the series and we write:
n—oo
> a,=4a +a, +az+ ... +a, = L,

n=1 )
and we say that the series >, a, converges to L . If the sequence {Sn} is divergent :.
then the series Z a, is divergent (or diverges) and it has no sum. .

Example : 7
Determine whether the following series convergence or divergence: Y

n(n +1)
Solution
The nth term of this series can be rewritten (using partial fraction) as,
1 1 1
an - ——

:n(n +1) " on+l

The nth term of the sequence of partial sums is

S, =a +a,+a;+ ... +a,
1 1
+__
(n n+1]

LG

n
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We see that all numbersin S, except the first and last numbers cancel,

lim S, = lim [1— L le.

n— oo n—o n+1
Thus the series converges to 1.

SSSSSSSSSSSS

Note:

The above series >

is called a telescoping series, since S, causes the
n(n +1)

terms telescope to (1— ! ]
n+1

Example : 8
Determine whether the series Z(—l)n+l converges or diverges.
n=1
Solution

The terms of sequence of partial sums are
S=1 S,=0, S3=1, S, =0, S; =1, S5=0, ...the nth term may be

written as,

1 if n odd.
S, = )
0 if n even.

Since the sequence of partial sums {S, }oscillates between 1 and 0, it follows that

lim S, does not exist. Hence the series diverges.

n—oo

SSSSSSSSSSSS

Example : 9
Determine whether the series Z n® converges or diverges.
n=1
Solution

The terms of sequence of partial sums are
S =1 S, =1+4=5, S3=1+4+9=14, . . .,
Sp =1+4+9 + . .. +n?,

The sequence of partial sums grow beyond every number, and S, is greater than or equal to

n® ateach stage, then lim S, = oo, and hence the series diverges.
n—oo

SSSSNSSSSSS
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2.1 The Geometric Series

One of the most important series occurs frequently in solutions of applied problems is
the geometric series

< n-1 2 n-1
ar = a+ar +ar° +...+ ar + ...
n=1

where a and r are real numbers with a # 0.

Theorem : 4

(a) Converges and has sum S = 1 a

if | <1.

(b) Diverges if || >1.

Proof

If r =1, then, S,=a+a+a+...+a=na

lim S, =, and hence the series is diverges.
n—oo

a if n odd

If r = -1, then, S, = .
0 if n even

lim S, = does not exist, and hence the series is diverges.

n—oo

If | #1, S, = a+ar +ar? +...+ar"™ | multiply both sides by r,
rS, = ar+ar® +ar® +...+ar" , subtracting these two equations,
a(l-r")
1-r)S, =a(l-r") or S, = —~
Consequently,
. . . r" .
lim S, = im -2 — gim 21 =& 2 iy
n—oo nool-—r noo 1—7r 1-r 1-r1r now
_ 2 i |r] <1,
By theorem (4.1.3), lim S, =<1-r
n—oo -
o0 if |I‘| >1.

Hence the series converges to % if |r|<1 and divergesif |r|>1.
—r

SSSSSSSSSSSS
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Example : 10
. : 1 1 1 1
Discuss the convergence of the series: = + — + — + — + . ..
9 27 81 243
Solution
This series is a geometric series with : a =é, r :% < 1. Then the series
a 1/9 1
converges to the sum = = ==,
1-r 1-1/3 6
SSSSSSSSSSSS
Example : 11
Prove that the following series converges and find its sum,

4—2+1—1+1—1+...
2 4 8

Solution

This is a geometric series with: a =4, r:%1 e | < 1.

. . a
Then this series converges to the sum : 1 = =

Example : 12
Determine whether the series z (=)™ . converges or diverges.
n=1
Solution
SE)" = 1141+ 1+,
n=1

This is a geometric series with : |, i.e. |r| = 1. Then it is divergent series.

SSSSSSSSSSSS
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th
2-2 The N Term Test

Theorem : 5

. Ifaseries > a, isconvergent, then, lim a, =0. .
. n—w aaia
........ =l

Proof .
The nth term a, of the series can be expressed as a,, = S, — S,_1 -
If S isthe sum of the series Z a, ,thenwe know that,
n=1

imS, =S andalso, |Ilim S,; =S.
n—oo n—oo

Hence, lim a, = Ilim S, - Ilim S, = S-S=0.
n—oo n—oo n—oo

Note that the converse of this theorem is not true, i.e. If lim a, = 0, it does not necessarily

n—ow

follow that the series z a, Isconvergent.
n=1

As a corollary of the above theorem, we obtain the following test for divergent.

SSSSSSSSSSSS

- Forthe series ¥ a, ,

n=1

@ If nli_r)noO a, # 0 or doesnot exist, then the series is divergent.

(i) If nli_r)noo a, = 0, the series may be convergent or divergent (Test
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Example : 13
Determine whether each of the following series converges or diverges

n 2 n +1
(@) = an - 10 , (b) X n , O -
1 1
d _1 n+1 } = , f +
d) X (-1 (e)Z\m ()Zn2
Solution

. n 1 .

| = = =0, hence, n diverges.
(@ ninoo 3n + 10 3 ” Z3n+10 J
(b) lim n? = o = 0, hence ¥ n? diverges.

n—oo

© tim 21 _ 1.0 hence s N+ 1 diverges.
n

n—o n

) lim (=)™ does not exist, hence ¥ (-1)"* diverges.

n—oo
) lim —— = o, hence s L may be convergent or
Nn—oo n \/ﬁ

divergent (test fails).
() lim 1 o, hence ¥y iz may be convergent or
n

n—w n

divergent (test fails).
SSSSSSSSSSSS
The series in parts (e) and (f) of the above example, further investigation is necessary

to decide if the series converges or diverges.
Whenever we have two convergent series we can add them, subtract them, and

multiply them by constants, to make other convergent series. The next theorem gives these

results,

Theorem : 6

. n=1 n=1

: () 3 (a, £b,) convergesto A + B.

" n=1

" (i) § ka, = k § a, convergesto k A, k isa constant.

&I n=1 n=1
\k =
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Example : 14

n n

Show that the series > ;n converges. Find its sum.
n=0 6
Solution
o 3" - 2" ® 1 1 » 1 » 1
z —nzz(_n__nj: 2 o0 T =
n=0 6 n=0\ 2 3 n=0 2 n=0 3
The first series i 1 isageometric serieswitha =1, r = % < 1.
n=0 2n
Thenit convergesto 1 _ 5
1-1/2
The second series i 1 isageometricserieswitha =1, r = % < 1.
n=0 3n
. 3
Then it convergesto —— = —.
1 -13 2
. o 3" - 2"
Hence the series > ————— convergesto 2 — 3 = 1
n=0 6" 2 2

Example : 15

Discuss the convergence of the series 3. % Find the sum if it exists-
n=1 3

Solution

- o n-1
FRE

n-1 3" n-1 \ 3

o n-1
the series = 8 (—j is a convergent geometric series (a =1, r=1/3 <1).

n=1
Then: ¥ o - g Lt _ 8(§j=12.
= gt 1-1/3 2
S§SS5SSSSSSSS

Theorem : 7

If > a, is a convergent series and > b, is a divergent, then, -
n=1 n=1

.S (a, = b,) isdivergent.
n=
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Example : 15
Determine whether the series Z [(—1)n+l + Si"j converges or diverges
n=1
Solution

Y ((—1)“l . 3ij - Sepm . 5

n=1 n=1 3"

: . ® . T : .
The first series = 3 (—1)n+1 is divergent, while Y —- Isaconvergent geometric series
n=1 n=13

,then the series, i ((—1)n+1 + inj is divergent
3

n=1

SSSSSSSSSSSS
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Exercise (4-2)

(I) Determine whether the following series converges or diverges. If it converges,

find its sum.
n+2
w F 7 .200(2) ORI L@ ¥ 2
n§l 4" @) nZ::1 3 ® El( D 3" El 3"
6 5 2" @ 5 2 ) wmn_l ® 32
n=1 n=1 9n—l nZ::1 3 n=1 3n+1
9 x2" 3" ., (10 5L . (11) 32 . (12) x5"
n=1 n=1ve n=1 n=1
© (5 1 (3 3 " 1 ® n—2
13 I S _3) ., @5y 2], @e J5
( )El(zn an i3] w9 e 568
o 2N _ 3 L 1\ » 8 © 1+ 3"
17 (a8 U (19 (20
an Eo 3" (18) ngl 5 ( )nél 3t (20) nZ::0 2N
0 2n+1 0 1 1
21) < o qpynd . (22) X . (23 L _j
@ § @ ¥ @3 3 (( ) S

(11) Determine whether the following series converges or diverges.

13+3+ + + 21+1+ +1+
@) 3+ 5+ padie @ 1+
(3)E+i+i+i+...- wi_ 1, 1_ 1,

9 27 81 243 2 4 8 16

n-1 2 3

(5) -1 1 . n (6) 1. 8.8 & |

1+[£+...+£ +... 3 9 7
(7)0.37+0.0037+...+i+

(100)"

(111) Determine whether the following series diverges or needs further investigation.

. ol .

@ nZ::1 5r13rl 1 @ n§1 3n3n -1 ®) n§1 e" 1+ 1
© 2 o o i

@ 3 n”+ ] ) Z; n sin[%] © = %

) ng;:l 2 + ::0.5)n ®) ng;’l 3\/%/54- 5 ®) nOZ:,an

w0 $ (1 . j)” a § '”(72%} (12) §1 el

SSSSSSSSSSSS
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3- Positive—Term Series

In the previous section, the convergence or divergence of several series obtained by
finding a formula for the nth partial sum and determining whether the limit of S, as

n — oo exist or not. Unfortunately, except in special series such as a geometric series or a
telescoping series, it is often impossible to find an explicit formula for S_. However, we can

o0
develop tests for convergence or divergence of a series > a, thatuse the nthterm a,.
n=1
These tests will tell us only whether the sum of the series exists or not and if will not give us

o0
this sum. However, consider only series > a, with a, > 0, for every n (positive-term
n=1

series).
The convergence or divergence of other series can often be determined from that of a

related positive-term series.

For the positive term series > a, with a, > 0, for every n, the sequence of partial sums
n=1

Sl :al, 82:a1 + a2, Sn = a1+a2+ +an y Sn+1 = Sn + an+1,
is monotonic increasing sequence

Theorem : 8

n=1
that: S, = a; +a,+ ... +a, < M foreveryn, then the series -

converges and has asumS < M . If no such M exists, the series diverges.

(!:::::::::::.
&

3-1 The Integral Test

0
We may use the n'" term a, of a series > a, to define a function f such that
n=1

f(n) = a, for every positive integer n.  In some cases, If we replace n with x, we obtain a

function that is defined for every real number x > 1.

The next result shows that if a function f obtained in this way satisfies certain
conditions, then we may use the improper integral j1°°f(x) dx to test the series > 7_;f(n) for
convergence or divergence.
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Inteqral Test

//(f\\\

If § a, Is a series, let f(n) = a, and let f(x) be the function obtained by
n=1

replacing n by x. If f(x) is positive-valued, continuous, and decreasing for every .

o0
real number x > 1, then the series Y a,
n=1

(i) converges if: Tf(x) dx converges. , (ii) diverges if Ojof(x) dx diverges
1

Example : 16

. R T
Prove that the harmonic series »' = is divergent.
n=1

Solution

Let f(x) = E, then f'(x) = — <0 vxz=L Since f(x) is positive valued,
X X

continuous, and decreasing for x > 1, we can apply the integral test

L dx = fim In xJi=lim (Int—1) = (diverges).
X tow t—>o

——8

Then the harmonic series >’ 1 diverges.
n=1 N

SSSSSSSSSSSS

Example : 17
Discuss the convergence of the series Y. iz .
n=

1n
Solution
Let f(x) = iz then f'(x) = _—f <0 WVvx=>1. Since f(x) is positive valued,
X X

continuous, and decreasing function for x > 1, then

© 1 S L |
j—z dx = lim —| =1lim (— +1)=1 (converges).
1 X tow X 1 t—o>w t

o2 1
Then the series Y. — converges.
n=1 N

SSSSSSSSSSSS
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Example : 18
® 2
Discuss the convergence of the series 3 ne™"
n=1
Solution

2 2
Let f(x) = xe ™, f'(x)=—(2x%+1)e™ <0 vx=L

Since f(x) is positive valued, continuous, and decreasing function for x > 1, then

t
© 2 =1 2 1. Y 1
[xe™ dx = lim —e™ | = Zlim (et-e' )= —<w (converges).
1 t—>o0 1 2tow 2e
L@ n2
Thenthe series > ne™" converges.
n=1

SSSSSSSSSSSS

We can use the integral test to prove the following theorem which may be used as a

test for convergence or divergence.

Theorem : 9

- _ o 1
The p-series > — =1+
n=1 nP
(i) convergesif p>1. (i1) divergesif p<1.

Proof
Let f(x) = —
P
0 X—p+l t 1
If p>1,wehave: [xPdx = lim = —,
1 too —p + 1 L p-1

which is finite for p > 1,. Hence the p-series convergesif p > 1,.

If p=1, wehave X l which is the harmonic divergent series.
n=1 N

If 0< p < 1,then 1 -p >0, and,

0 —-p+1 t
[xPdx = lim X N (0 — 1) = oo, (diverges).
1 tso —p + 1 L p-1

Hence the p-series divergesif p <1 .

««««««««««««

SSSS55555555
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Example : 19
Determine whether the series converges or diverges.

® 1 » 1 ® 1 ® 1
n=1 %ﬂ?{ n=1 n3 n=1 Qﬁ;; n=1 \ﬂ;g
Solution
@ i ! = i L . p-series with p = 2 < 1, divergent series.
n=1 W n=1 n?’ 3
(b) z is p-series with p = 3 > 1, convergent series.
n-1 N
1

—~
K3)
NgE
o

—~
o
N
Ms L
:ﬁ
w

p-series with p = g < 1, divergent series .

>

p-series with p = 3 > 1, convergent series.

=}
1
[N

SSSSSSSSSSSS

32 The Comparison Tests

The next test allows us to use convergent (divergent) series to establish the

convergence (divergence) of other series.

Basic Comparison Test

Let > a, and Y b, be positive term series,
n=1 n=1

i) If Y b, convergesanda, < b, for every positive integer n, then: 3 a, converges.
n=1 n=1

i) If z b, divergesand a, > b, for every positive integer n, then: Z a, diverges.

N\t

Example : 20
Determine whether the series converges or diverges.

© 1 © 1
a , b S
()n§12+5” ()n§2 Jn =1
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Solution

n
(@) Forevery n > 1, ! < 1 = (Ej :

0

n
The series Y (Ej IS convergent (geometric series with r = % < 1), then the series
n=1

0

2 n
n=1 2 +5

is convergent.

(b) Forevery n > 2,

> —

n-1 \/ﬁ

«© 1

The series Y. is divergent (p-series with r = 1 < 1), then the series §
n=1

ﬁ 2 n=2 /n —1

is divergent.

Example : 21
Determine whether the following series converges of diverges

Solution
By ignoring the first four terms, we have, t . 1 1 1

1 1

Since. 1_1 1 1 1 1 1 1
212

—--<—-, —-—<_— . .andsoon,
31 6 2° 41 24 28

IA

1
x
then the remainder of this series from the fifth term is less than the convergent geometric
series zzin (r = % < 1). Then this series is convergent.
555555555555
To apply the basic comparison test we need to have on hand a list of series that are

known to converge and a list of series that are known to diverge and then prove that either

a, < b, or a, = b,. This is very difficult if a, is a complicated expression. The
following comparison test is often easier to apply, because after deciding on > b, , we need

only take of the quotient a, /b, as n — .
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Limit Comparison Test

- Let Y a, and Y b, be positive term series. If there is a positive real number c

- n=1 n=1

. a . . L
Tiosuchthat: lim b—” =c > 0, then either both series converge or both series diverge.
n—oo n

If the limit equal = O or oo, it may be possible to determine whether the series

Y. a, converges or diverges by using the comparison test.
n=1

To find a suitable series Y. b, to use in limit comparison test when a,, is a quotient,
n=1

a good procedure is to delete all terms in the numerator and the denominator of a, except

those that have the greatest effect on the magnitude.

We may also replace any constant factor c by 1.

Example : 22
Determine whether the following series converges or diverges,

L O I ML 1) R

n+1 n-1n3 + 10 n-1 2" -1

@S2 %

n=1(n + 2)
Solution

(a) Let a, = _2n+3  and b, = 1 , then
n’ + 4n + 4 n
. a . 2n° + 3n
lim - = lim 5 =2 >0.
noo by, now n® 4 4n + 4

Since ¥ b, = 5 1 diverges, § 21+ 3 diverges.
n=1 n=1 N n-1(n + 2)?

(b) Let 5, = " . and b, =1,then
n

. a )
lim = = Ilim
n—ow bn noow N +

=1 >0.

b, = 3 1 diverges by the nth-term test,, then 5 " diverges.

1 n=1 n-1h + 1

Since

T M8
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1
(c) Let a, = 30 +2n  4ng by = = . then
n® + 10 n
2 3
lim 20— gim 002075 .
n—oo n n—oo n3 + 10
Since ¥ b - ¥ L isaconvergent p-series, then & 30+ 2N converges
n — Z 7 ’ 237 .
n=1 n=l n n=tn> + 10

d) Let 1 db—l—lnth
(d) eanzzn an n_z—n_ > , then

im &~ jim -2 —fim — <+ _1s0.
n—oo bn n—w 2" -1 now 1 — (1/2)”

0

Since > b, = (%} is a geometric convergent series, then >’
n=1

n=1 n=1

n

; converges.

SSSSSSSSSSSS

Example : 23
Determine whether the following series converges or diverges,

o 3 v 3n? 14
() X . () ¥ —
n=1./n2 + n + 1 n=12n“ — n -1
Solution
(@) Let 5 - 3 and b, = L, then
Jn? +n+1 n
. a . 3n
lim -2 = lim =3 >0.
n—o b, no>o n2 .41
. ® © 1 .. w .
Since X b, = X = diverges, then ¥ 3 diverges.
n=1 n=1 N n=1 n2 +n+1
3?2 + 4 n2/3 1
(b) Let a, = and b, = = —— ,then
2n? - n -1 n? n4/3
3% + 4an?
lim 20 = fim i EN
n—wo b, no>o 2n2 — n - 1 2
. ® ® 1 . .
Since X b, = X —3 saconvergent p-series
n=1 n=1l N
» 3n% + 4
Then > > converges.
n=12n° — n -1

»»»»»»»»»»»»
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Example : 24

. ® Inn
Does the series Y. —3 converges ?

n=1 N
Solution

We know that In n increases more slowly thann as n — oo, i.e.
Inn n 1

Inn <n a n—ow.let a, = —— and b, = — = — ,then

3 3 2

n n n

. a . Inn . 1/n .

lim —™ = lim —— = lim =— = 0 (teast fails)

n—wo b, n—swo N n—o0

Then we can not decide the convergence by this test, we can use the basic comparison

nn n 1 . » 1 . .
test as follows, —— < — = —. Theseries Y — isaconvergent p-series
nd nd n? n=1 n2

© Inn . ]
Then X — IS a convergent series.
n=1 N

3-3 The Ratio And Root Tests

As we said before, it is not always possible to discuss the convergence of the series by
using the basic comparison and limit comparison tests for some complicated expressions. For
the integral test to be applied, the terms of the series must be decreasing as n increasing, or we
might not find a formula for the nth term test. These conditions often rule out series that
involve factorials and other complicated expressions. The following two tests can be used to
determine convergence or divergence when other tests are not applicable.

The first test is the ratio test which is often effective when terms of the series contain

factorials or terms contains powers of n.

The Ratio Test

[-..i...i...i...g...g...i...g...i...g...?...i...i...i...i...i...g...5...5."?...i...?...?...i...i...i...i...i...5...5...5...?...i...?...g...i...i...i...i...i...5...5...i...g...i...?...g...i...i...i...i...i...g...g...i."’
3

-1 Let >a,, Dbe apositive-term series, and suppose that: lim "1 L. Then

n—oo an

- () L <1, the series is convergent.

- (i) If L >1 or o,theseries is divergent.

- (i) L =1, the series may be convergent or divergent, (test fails).

)OI O O O OO O OO OO O O O O O OO 0 O OO O
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Example : 25
Test the following series for convergence or divergence,
0 3” 0 2I’l
@@ X~ - , (b) X —
n=1 n't n=1n
Solution
n n+1 n+1 1
(a)an=3—,an+l:3—,then 4 _ 3 o3
n! (n+1)! an (n+1! 3" n+1
a T L
lim —" — Jfim = 0 <1.Thenthe series § 3 is convergent.
n—w  ap n—owo N + n=1 N!
n n+1 n+1l 2 2
®) a2  a,-—2 _ then &ma_ 2" n°_ 207
n2 (n +1)2 a, (M+1)% 2" n? +2n+1
a 2
lim =" = fim 2N o1
n—oo an n—w n +2n +1
_o» 22
Then the series Y. — s divergent.
n=1 N
SSSSSSSSSSSS
Example : 26
. . © n"
Discuss the convergence of the series Y. —
n=1 N:
Solution
n n+1
n n+1
ap = —, Apy = Q,then
nl (n+1)!

a, (n+1! q (n+)n! np

n n
] antl1 ] n+1 ) 1
lim = |im = lim 1+ = =e >1.
n—oo an n—oo n n—oo n

n

. © no.
Then the series > — s divergent.
n=1 N:

apg ()™ nl (™ nt (n + 1}“
n n o

SSE555555555

137



Chapter 4 Infinite series

Example : 27
Determine whether the following series converges or diverges,
@ § nin! (b) § 4" nin! © § 2" + 5
n=1(2n)! ’ n-1 (2n)! ’ n-1 3"
Solution
@ %Hz(n+DHn+D!QnH M +) (n+1) n+1
a, 2n+2)! “ninl @2n+2)(2n+1) 4n + 2
fim S g DLy
n—w  ap now 4n + 2 4 '
Then the series s nint s convergent.
n:l(zn)!
(b) 2nid_ A D (n+D! @) (n+) (n+D) 20 + 1)
a, (2n +2)! 4" nint (2n+2)(2n+1)  2n +1
a
im 20 gim 20D et fails)
n—o ap noo 2N + 1

So we try to discuss the convergence of this series by any other method. We note that,
®© 4n!n! 8 16 128
2 — + +

= + -
n=1 (2n)! 3 5 35

The elements of the sequence of partial sums are:
14 118
S;=2, S, =—,S3=",....
1 273387 ¢
This means that the sequence of partial sums are always grow and the series

© 4 nln!

is divergent.
n=1 (2n)!
© it _ 2" 4 5 3" _1 2" 4 5 |
an 3+ 2" +5 3 2" +5
dpy . 1 2™ 45 1 245/2" 2
lim = lim=.2—— " == |im =—=% =% <1.
n—o ap n>o3 2" 4 5 3nsw 1 4+ 5/2" 3

0 n

Then the series >’
n=1 3"

is convergent.

««««««««««««

SSSS55555555
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Example : 28

For what positive values of x does the series converges?
X3 X5 X7 X2n—l

X+ — 4+ —4+ =+ ...+ +
3 5 7 2n -1

Solution
an,y  x"™ 2n-1 2n-1 >

a, 2n+1" x21  2n+1

] ani ] 2n -1
lim = lim x2 = x2.
n—oo an n—oo 2n +1

The series converges if x? > 1, then the series converges if X is positive and less

than 1 and diverges if x greater than one.

SSSSSSSSSSSS

The second test is the root test which is often effective when the terms of the series

contains powers of n.

The Root Test

- Let >.a, be apositive-term series, and suppose that: |im nfa, = L- Then
n—oo
MIf L <1, the series is convergent.
@i)If L >1 or oo, theseriesis divergent.
@@ f L =1, the series may be convergent or divergent, (test fails).
Example : 29
Discuss the convergence of the following series
0 n2 o 3“
@ >—— b) > >
n=1 2 n=1n
Solution
2 2 2/n 2
. . : ® n :
@) an:n—, lim o lim n :1 <1, The series > —— IS
2" now |20 now 2 2 n=1 2"
convergent.

n n 0 n
(b) a, = 3—4, lim 1”’3_4 = lim 3 =3 > 1, Theseries Y i4 is divergent.
n

n n—oo n—oo n4/n n=1nNn

SSSSSSSSSSSS
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Example : 30
0 3n+1
Discuss the convergence of the series > 5
n=1 n
Solution
g. !
23n+1 23n+1 5 N
a, = , lim n = lim =0 <1.
n2n n—ow | n2n n—w n2
0 3n+1
Then the series > T is convergent.
n=1 n
SSSSSSSSSSSS
Example : 31

: I 3"
Discuss the convergence of the series Y (1 - —J .
n=1 n
Solution

n n
a, = (1 — Ej , lim wn/[l — Ej = lim (1 — §j = 1 (test fails).
n n—o n n—o n

The series need further investigation. Use the nth term test,

n
lim a, = Iim (1 - E) — e™® = 0. So the series diverges.
n—o n—o n

SSSSSSSSSSSS
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Exercise (4-3)

(I) Use the integral test to determine whether the following series converges or diverges,

0 _n3 0 2 0 1
(1) Xnle @ ¥ @
n=1 n=1 gn n=1 3n + 2
. n ®© 1 ®© 1
4 5} _ 6 ——
) nZ::l n? +1 ©) nZ::1 n(2n -5) © nZ::1 J2n +5
> 1 ® 1 ® 1
7 — 8 X — 9
0 n§11+16n2 © nZ::1 nin(n+1) n=1 n(Inn)?
o) 2 0 1 0 3
1w 3 — a ¥ —— . 1@ 3
n=1 n° +3 n=0 n./n% -1 n=1 n° +1

(I1)  Use the p-series test to determine whether the following series converges or diverges.

W3 @ ¥ ® Y
DX O & ® 3 =

(1) Use the basic comparison test to determine whether the following series converges or

diverges,
© 1 © 8n% -7 © 2 + cosn
n=1n" +n° +1 n=1 e (n+1) n=1 n
2
® n » Jn ® 1
@ 3 — 6 ¥ — ® ¥ ————
n=1 n° +1 n=1 n°+1 n=1 ./4n3 — 8n

(IV) Use the limit comparison test to determine whether the following series converges or

diverges,
© 8n? -7 ® 5 % 2

W X" @3 @ ¥
n=1e" (n + 1) n=1 n° + 5 n=1 n° +1
© 2 1 © 1 w 2 2 -1

@ 3 |5 6 = 6) 3 VT

n-1\nd -1 n=l [4n3 —8n n=1 . /x3 +1

(V) Use the ratio test or the root test. Discuss the convergence of the following series
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0 5”
O X —
n=1 n!

© 100"
(4) X

—1 nl

@ iil [3n + 5)

2n — 7

10

© n
) ¥
n=1 10

1) 3

n
n=1 3"

®)

ay >

0 5n+l

14
) n=1 (Inn)"

[o¢) 4n
® 3

n=1 N

© nl
(6) rzi e

e

2

0 2 n
@ 3 [1-3)

10
© n- +10
@ 3 =

n=1 n!

as) ¥ (1—3]n
n=1 n

(V1) Determine whether the following series converges or diverges,

14n?

1+5"

1 X

(13) 3

n=1

1
32n + 1
2

) 3 ‘:}2 -

~ n+ 3

19) S Jn+1—+n
n=1

In n

(22 ¥ —

n=1 2n° + 1

@) 30: (n+D(n+2)
n=1 nt

(5) 3 ne™
n=

1

(200 ¥

n=1 n° +1

o) 2
(23) > n*e™"
n-1

§58888888888
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(15)

" n
5 - 2)
n=1 n

18 ¥ -

n-1 niInn

ey ¥ LN

n=1 N~ + 3n

i (1+l)
n=1 n

(24)
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4- Alternating Series, Absolute And

Conditional Convergence

4-1 Alternating Series

The tests for convergence that we have discussed in the previous section can be
applied only to positive-term series. We now consider infinite series that contain both positive
and negative terms. One of the most important type is an alternating series, in which the terms
are alternately positive and negative,

i(—l)n a,=a;—ay+ag—as+...+(-)"a,+... ,with a, > 0 foreveryk.
n-1

Alternating Series Test

o0
The alternating series 3 (-1)"* a, Isconvergent if the following two

n=1
conditions are satisfied;

(i) {a,} isdecreasing.

There are two methods to prove (i)

(1) Directly, by proving that: a, — a,4 = 0

(2) Express a, by f(n)and replace n by x and then prove that f(x) is
decreasing i.e. f'(x) < 0 forevery x > 1.

Example : 32
Discuss the convergence of the following series,
@ $eptt o O St
n=1 n n=1 n
Solution
1 1 1
@ ap = —, f(n) = -, f(x) = -
n n X
@ f'x) = _—21 < 0 forall x>1,then {a,} isdecreasing
X
N .1
@) lim a, = lim = = 0.

n—oo n—o N

. % 1 .
Then the series . (-1)" = s convergent.
n=1 n
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(M%=%,fm=%,fm=%

mn f'(x) = — < 0 forall x >1,then {a,} isdecreasing
X

(i) lim a, = lim

n—oo

1
—2:0.

n—ow N

Then the series Ozo] (" iz

is convergent
n=1 n

888888888888

Example : 33

Discuss the convergence of the following series,

® L s O Ee T
n= — n= -
Solution
2n 2n 2X
@ a, = " fn) = —2" fpy = 2%
" 4n? -3 ) 4n? - *) 4x% - 3
(i) £(x) = (4x* = 3)(2) - (2x)(8x)
(4x? - 3)?
2
= — H < 0 forall x>1, then {a,} isdecreasing
4x° —
(i) lim a, = lim 22—” - 0.
n—oo n—-wo 4n< — 3
Then the series 3 (~1)"2 e is convergent.
n=1 n- —
2n 2n 2X
b) a, = , T(n) = ,  f(x) =
O = =03 0= 3
(l) fv(x) _ (4X — 3)(2) _(ZX)(4)
(4x — 3)?
= — ﬁ < 0 forall x>1, then {a,} isdecreasing
4x — 3
i) lim a, = tim —2"_ -1 . o
n—o nowo 4n — 3 2
Then the series %O] (—1)”‘1 ———— isdivergent.
n=1 4n - 3

§88888888888
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4-2 Absolute And Conditional Convergence

Note that: in example (1) we obtain,

© . @ .

$ ot L convergeswhile 3 1 diverges

n=1 n n=1 N

®© n-1 1 . 0 1

> (<) — convergeswhile y = converges too.
n=1 n2 n=1 n2

Now we ask our-self what is the difference between theses two series? , the answer of

this question leads us to the following definitions.

Definition : 6

- (1) A series Z a, isabsolutely convergent if the series,

n=1

5 lan| = |ag|+|as| + . . .+ |ap|+. .. isconvergent.
-1

. .
. (2) Aseries Y a, isconditionally convergentif ¥ a, isconvergentand
n=1 n=1

o0
la,| is divergent.
1

According to these definitions, the series § " is absolutely convergent
n=1

while the series 5 (-1)" is conditionally convergent.
o

41
=1 n

The following theorem tells us that absolute convergence implies convergence of the series.

Theorem : 10
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Note that: If > |an| diverges, then > a, may be converges or diverges.
n=1 n=1
Example : 34

Determine whether the following series converges or diverges,

Solution

The series is neither alternating nor geometric no positive-term, so none of the earlier
tests can be applied. Let us consider the series of absolute values,
Yla,| = 1, which s a geometric
2 22 22 24 2» 28 ot 2B

serieswith r = 1/2 < 1, thus the given series is absolutely convergent and hence the given
series is convergent.

888888888888
Example : 35

. . ®sinn
Discuss the convergence of the series Y 5

n=1 N
Solution

The series is neither alternating nor geometric nor positive term, so

© |sin n o [sin n|
D X —
n=1 n n-1 n
_ _ .= [sinn| © 1
Since [sin n| < 1, then the series 3" — < X
n=1 N n=1N

Since the series — is convergent and by the basic comparison test, then
n=1n

_ @ [sin n| _ _ © sinn .
the series 3 ——— converges, i.e. the series > ——— is absolutely convergent, and
n=1 N n=1 N

. ®sinn
hence, the series Y —— converges.
n=1 N

§88888888888
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Example : 36
Discuss the convergence of the series 5 (-t "
n=1 3n + 2
Solution
n . . n 1
g = v lim a, = lim = —- = 0.
n 3n + 2 Noawo n—wo 3N + 2 3
: . 0® _ n L
Then the alternating series, Y (-1)" 1 is divergent.
n=1 3n + 2
o0
By the n'" term test we see that, 3 |—pnt " | _ is divergent.
no1 3n + 2 n=1 3n + 2

We see from the preceding discussion that an alternating series may be classified in exactly
one of the following ways :
** absolutely convergent series
** conditionally convergent series
** divergent series

The following two tests may be used to investigate absolute convergence.

Ratio Test For Absolute Convergence

. R
Let > a, be a series of non zero terms, and suppose that: lim
n—ow | ap,

(i) If L <1, theseriesisabsolutely convergent.
(i) If L >=1 oro, theseriesisdivergent.

(i) If L =1, the series may be absolutely convergent, conditionally

convergent or divergent, (test fails). /

Root Test For Absolute Convergence

I
—
_|
>
@
S

Let > a, be aseries of non zero terms, and suppose: lim o/ a, | :

(i) If L <1, theseriesisabsolutely convergent.
(i) If L >=1 oro, theseriesisdivergent.

(i) If L =1, the series may be absolutely convergent, conditionally

convergent or divergent, (test fails).
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Example : 37
Determine whether the following series is absolutely convergent, conditionally

convergent, or divergent.

0 2 4 .
@Yy~ 2 ) ey
E( ) 2" n;( n+1
n+1 1 ©
(© Z( Hm @) Y™ 03"
n=1
Solution
n? +4 (n +1)2 + 4
@) fan| = [ana| = Tt then
\an+1\_\(n+1)2+4 2" | 1|n?+2n+5
‘an‘ ‘ 2n+t " nZi4| 2 n° + 4
a 2
fim [t L [R2 20 S Loy Loy
n—w | a, 2n-w n¢ + 4 2 2
e 2 n? +4 .
Then the series 3 (-)"* == is absolutely convergent.
n=1 2
) fag) = " Jag = "L then
n+1 n+2
a,| _ |n+1 n+1]  In* +2n+1
a, n+2 n n® + 2n
a 2
lim |22~ fim (%J ~ 1. (test fails)
n—>o an n—o n° + 2n

The series needs more investigations, by the second condition for alternating series test,

n . . n
ap = , lim a, = lim =1= 0.
n+1 n—ow nswo N + 1
The series is divergent.
1+n 2 +n
© |an| = : ans| = ———, then
n? (n + 1)2
2. | n+2 n2 | |n® + 2n?
a, n+12 n+1 (n+1°
a 3 2
tim 22 = dim |2 1 (rest fails)-
n—ow n—w (n + ]_)
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By alternating series test,

(i)f(x):“izx, f'(x) = _X;Z < oforall x >1
X

X
(i) 1im a, = lim *h_ o,
n—oo n—oo n
4 n+1 ]
Then " =T = conver es, but the absolute value of the series
2 g
an+1 1 ©in + 1 © 1 © 1
-t = S|—]=X=+
n n n=1 n n=1N n=1n

which is a sum of convergent and divergent series, i.e. which is divergent series. Then

2 -n" n-1 n_+1 is conditionally convergent series.
n?
@ la,] = 03", lan.] = (0.3)™ then
a n+l
lim [ = lim {(03) J =03 <1.
n—o | ap n—o { (0 3)

Then the series i(—l)”‘1 (0.3)" is absolutely convergent.
n=1

§88588858888
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(1) Determine whether the following series converges or diverges,

L@ (™5™

00 + 1
D X EH™ T

n=1

@ 32

n=1 n® +17

M S+ e)

n=1

2 a1
(10) X (1) 1@

n=1

o 1
13) y(pmt T2
n=1 n+1

L, N+ 3
(10) El( D nn + 1)

a1 tan™t

a9 >pm
n=1 n

9 36

Exercise (4-4)

n=1
1

. (5 2( 1)”“—

+ 7

L ®  S()™nsin/n)

n=1
) T ez .
n
n=1 -1

n+l n +1
n

L an sEpm

n=1 Inn

20) 3 (=)™n sin(L/n)

n=1

[(12) 2( prt & =1

@ T
(©® T ()2
n=1 n

L) § pmt L
3n

-1
e"+1

15) n%(—1)”+1 (\hsi - )

L(18) T(-)™ (3)
n=1

(11) Determine whether the following series is absolutely converges, conditionally convergent,

or divergent,

(1)22‘”

(4) Z_:l(_l) n+1 5n

(7)%[nj
2

) 3 (Y-
n=1 n° +1
(13) 2( -t S
n+ 1
1
16 1 n+1
4 LT
19 ¥ (pmitt
n=1 1+ 3"

(@0 3

@ sl
n=1 n:

. %[in - 1]
n=1\ 2

n @3N
G nzlnﬁ
. (D) ;(5)—”
a9 &y
, n=1 (2n)!

. (@7) zl( "t f

(n +n"

n

n=1 (-n)

§88888888888
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. (6) EZ (-1

. (12) Z( AL

e z(—n - inj
n=1\2 3
n+1\/_
+1

L@ Yt

n=1 (2n )'
1 3”

09 3 1 (0D

=1 n® +1
n sinn

L (18) X -
n=1 N

. (21) 2( 1" ‘1”



Chapter 4 Infinite series

5- Power Series

The power series in (x - ¢) is a series of the form,
Ya, (x—0)" =ag+a;(X—C)+a,(Xx—c)2+... +a, (x—¢)" +...,
n=0
where c is called the center of the series and a,, a,,. . ., a,,...are the coefficients of the

series. When the center ¢ = 0, the power series reduces to,

dax"=a, +ax+ax +.. . +ax +...,
n=0

In a special case when the coefficients a, = 1, for all n, the series takes the form,

i(x—c)n =1+ (Xx—=C)+ (X=C)* +... +(x=C)" +... ,

which is a geometric series. This series converges if |x — c| < 1, which gives

-1<(x-c¢) <1, le. c-1<x<c+1
1

and it converges to : _
1-(x —¢)

The main objective of this section is to determine all values of x for which the power series

converges. Every power series in (x - ¢) converges if x=c, since
a, +a0) +a0°+...+a@" +... = a,.
To find other values of x that produce convergent series, we often use the ratio test for

absolute convergence.

Example : 38
Find all values of x for which the following power series is absolutely convergent:
© (x — 3)"
$ ( )
n=1 n
Solution
_ n
If we let U, = -3 , then
n
u n+1
lim L - | $ 29 n__|.
n—w | U, n— n+1 (x - 3)"

nool N +1

- Iim( n j|x—3| = |x-3|.
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For convergence |x — 3| <1,
ie. -l<x-3<1lie 2< x <4,
The seriesis divergentif: |[x — 3| >1, ie if x< 2 or x> 4.
If |x — 3| =1, the series may be converges or diverges, so we must discuss the

convergenceat x = 2 andat x= 4.

o0 — n o0 — n
At x =2: X x -3 = 3 (G0 which is a convergent alternating series.
n=1 n n=1 N
o (x = 3" © 1 L . .
At x=4:Y —— = ¥ = whichisadivergent (harmonic) series.
n=1 n n=1 N

So, the power series is absolutely convergent for every x in the semi-open

interval [2, 4) and diverges everywhere.

8888888588888

Example : 39
0 n
Find all values of x for which the following series is absolutely convergent. X—|
n-1 N2
Solution

n

X
Ifwelet u, = — then
nt
. x" nt .
= lim — | = lim
n—o0 O1+D!xn n—o0

The limit is less than 1 for every value of x, and hence, the power series is absolutely

Upy1

Un

lim =0.

n—oo

n+1

convergent for every real number Xx.

§88588858888

Example : 40

Find all value of x for which the following series is convergent Z n! x"
n=1

Solution

Ifwelet u, = n!x", then

Unpy1

Un

lim
n—>oo

_ n+ 1)1 x" _
= lim ( ) = lim |(n + 1) x| = oo for all values of x
n—oo n! x" n—oo

except at x = 0. Hence the power series is convergent only if x = 0.

§58888888888
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The following theorem will describe the solutions of the above examples in more

general way.

(i) The series convergesonly if x-c¢ = 0,i.e,if x = c.
- (ii) The series is absolutely convergent for every x.
= (iii) There is anumber r>0 such that the series is absolutely convergent if x is in

the open interval (c —r, c+r) and divergentif: x < c-r or x > c+r

In case (iii) of the above theorem, the endpoints ¢ - r and ¢ + r of the interval must be

investigated separately.

Definition : 7

The number r in theorem (11) is called the radius of convergence of the

- series. The totality of numbers for which a power series converges is called its
= interval of convergence. If the radius of convergence r is positive, then the interval

of convergence is one of the following (c—r, c+r), (c—r, c+r], [c—r,C+T),

In example (38) above, the radius of convergence is 1 and the interval of convergence

is [2, 4]. In example (39), the interval of convergence is (—oo, o) and we write r=oco. In

example (40), r = 0.
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Example : 41

o0
Find the radius and interval of convergence of the power series, 2

T
Solution
Xn
Let u, = , then
Jn
lim et _ lim n—ﬂﬂ = lim —— Jn x| = |x|
n—o [ Uy, nswo| /n+l x" n— oo /n+

The series converges for |x| <1 ie. -1 < x <1 anddivergesfor |x|>1

ie. X< -1or x>1.

n

At x =1 %O‘,——

© 1 . ) ) 1
—— which is a divergent p-series == <1].
14N nz::1 nt/2 Jep [p 2 )

© x" © (-)" . . .
At x=-1. Yy — = ¥ 3 which is a convergent alternating series.
n=1~+N n=1n

Then the radius of convergence r = 1 and the interval of convergence is [—1, 1)

§88588858888
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Exercise (4-5)

() Find the radius and interval of convergence for the following series

© n? x" o 1 0 © a1 X"
1 2 , (3 ) Jp—
S N i R

< n » 10" x" - -3)" n+
@ 3 Fx @ T © 3 S

n=0 n° +1 n=0 N n=1 n

o .y 2 _3)" © 0 2n+1
@ 3 e ® ¥ —1—x" @ 3=

n=0 n‘l'l n=1 |I’l(n +1) n:O(—4)n

© 1 X" © (3n)! |, o 10M x"
10 — , 11 , (12 _—
(10 El 4" Jn () n—o(2n)!x ( )nEO 32n

© (3x + 4)" © (x —2)" © (x — 5"
13 -_ , 14 - , (15 -
= ngo J3n + 4 ( )n§1 n(n +1) ( )El 25n

© n . © 2n _ n
16) 3 M a7 X n! x "N ,(18) ¥ u

n=0 2n+1 n=0100" n=0 n+1

© EAYAL © _a\n © n+l . n

n=0 3 n=1 e n=0 4

© _ n . _ n ® n+l _n\Nn
e 3 X e3) ¥ X3 ey ¥y XD

n=1 nb n=1 n n=1 n

(1) Find the radius of convergence of the following power series for positive integers

0 _ n 0 n n
5 (n+1)! Ex 6) Q3 n" x
n=0 10 n=1 n!

(111) Find the radius of convergence of the following power series for positive integers

c and d.

(1) § (n+c)! x L © § (cn)! x

nZo n! (n+d)! n=0  (n!)°

§88888888888
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6- Taylor And Maclaurin Series

A power series Ya, (x —c)" or Ya, x" determines a function f(x) whose
domain is the interval of convergence of the series. Specifically, for each x in this interval, we
let f(x) equal the sum of the series and we say that Ya,, (x —c)" or >a, x" isa power
series representation for f(x).

Numerical computations using power series provide the basis for the design of
calculators and construction of mathematical tables. In addition to this use, differentiation and
integration can be performed by using the power series representation.

One of the most important power series representation for a function f(x) is the

Taylor series.

Taylor Series

If a function f(x) haa power series representation, f(x) = >a, (x —c)"
with radius of convergence r > 0,then £ () (c) exists for every positive integer k and

a, =™ ()/nt .
Thus

A special case from Taylor series ifat ¢ = 0 is the Maclaurin series.

Maclaurin Series

If a function f(x) ha a power series representation, f(x) = Ya, x"
with radius of convergence r = 0,then &) (0) exists for every positive integer k and

a, =f™©)/nt.
Thus

f(x)= f(0) +f'(0).x + fuzﬁ.xz +...+f“2$.x2 + ...
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Example : 42
Find the Taylor series for the function f(x)= sinx in a power series at x= /6.
Solution
. T 1 1
f(x) = sinx, fl=|=2= an = —
09 2)-3 o=1
f'(x) = cosx, f'(zj - V3 a, _ﬁ
6 2 2
f'(x) = —sinx, f"[Ej _ -1 a, =+
6 2 2(2Y
f'"'(x) = —cosx, f"'(Ej = __\/§ as -8
6 2 2(3)
2 3
Then : sinx:1+£(x—zj—li(x—f) —ﬁi (X—E] +o
2 2 6) 22! 6 2 3! 6
§88858888888
Example : 43
Find the Maclaurin series representation for the function f(x)= e*
Solution
f(x) = f'(x) = f'(x) =... = fM(x) = &
Thus, f(0) = f'(0) = f'(0) =... = f™M () =1
2 3 n
Then: e* =1+ x + ~— + X 4+ + X 4+ ..
2! 3! n!
§85858558888
Example : 44

Find the Maclaurin series for the function f(x)= sinx
Solution

From example (42), we obtain,

f(0) =0, f'(0) =1, f'(0) =0, f"0) =1
Then :

§88888888888
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Now the question that arises here is, what conditions on a function guarantee that a
power series representation exists ? We shall next obtain such conditions. Let us begin with

the following definition.

Definition : 8

m..:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:...:.:}g\
% Let ¢ beareal number and let f be a function that has n derivatives at c. The nth- \

degree Taylor polynomial P,(x) of f at c is,

" (n)
P, (X) =f(c)+f'(c)(x—c)+%(x—c)2 +...+%(X—C)n .

- and the nth degree Maclaurin polynomial of f at O is,

£ (0)

(n)
P,(x) = f(0) + f'(0).x + T.xz + ..+w.x” .

n!
Note that P, (x) isthe (n+1)" partial sum of the series

&:zrr""f"ll:r;'\':"f'(":'r"'C'lF'r:I""'B":'—"gT';"G'"-'F"r '...E.l’.é‘.._;._.ﬁ...it\.;_‘._.'!. E...E...E...E...E...E...E...E...E...E...E...g...E...E...E...E...E...E...E...E....
Theorem : 12

- Let f have n+1 derivative throughout an interval containing c. If x is any number -

~ in the interval that is different from c, then there is a number z between ¢ and x such

The term R in theorem (12) is called the Taylor remainder of f at c. If c=0 is R, (x) the

Maclaurin remainder of f.

Now, the sufficient conditions for the existence of power series representation for a

function are given by the following theorem.

Theorem : 13

.. Let f(x) have derivatives of all orders throughout an interval containing c, and let

R, (X) be the Taylor remainder of fatc. If lim R (x) = O forevery xin the

interval, then f(x) is represented by the Taylor series for f(x) at c.
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Example : 45

Show that the Maclaurin series obtained in example (44) represents sinx for every

real number X.
Solution

In example (3), If n is a positive integer, then either
‘f (n+D) (x)‘ = |cos x| or ‘f (n+1) (x)‘ = |sinx|

Hence ‘f(“ﬂ) (z)‘ <1 forevery number z and

f(n+1)(z) X n+l
Ro()| = g: X" < M
(n + 1! (n + 1!
lim |Rn(x)| = 0,consequently lim R,(x) = 0, and the Maclaurin series in example
X—>00 X—0

(45) represents sinx for every number x.
§888588588888

Example : 46
Show that the Maclaurin series obtained in example (2) represents e* for every number x.
Solution
For f(x) = e, £ (7) = ¢?,
We obtain, R, (x) = % x"* = (neTzl)! x"+1

z

where z in a number between 0 and x. If 0 < x, then e? < e*

since the natural

exponential function is increasing, and hence for every positive integer n,

z
0 < R,(X) < € xn+t
(n + 1!

z Xn+1
lim 1~ X lim =0,
n—wo (N +1)! n—wo (N +1)!

and by Sandwich theorem Limit lim R (x) = O,

If x<0,then z< Oandhence e? < e = 1.. Consequently
n+1
0 < R,(X) <
Rn () (n +1)!

and hence R, (x) has the limit 0 as n— oo. It follows that the power series representation for

e” is valid for all non-zero x. Finally, if x = 0, then the series reduces to e = 1.

§58888888888
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Example : 47
Uxe .
Show that the function f(x) = 18~ if x# 0
0 if x =0.
does not have the Maclaurin series representation.
Solution
It is easy to prove that f'(0) = f"(0)=f"'(0) = ... = f(”)(O) = 0 for every

positive integer n. If f(x) has a Maclaurin series representation, then it is given by :

" (n)
f(x) = f(0) + f'(0).x + 'CZQ.XZ +...+fnﬁ.x”

0
24 = X"

n!
which implies that f(x) = 0 throughout an interval containing 0. However this contradicts the

= 0+ 0x +2.x
2!

definition of f. Consequently, f(x) does not have a Maclaurin series representation.

8888888588888

Example : 48
05
Use the power series representation for e* to find approximate value for [ e~ X 3aix
0
Solution
x2 X3
e=1+x+ TR Replace x by x° to obtain,
6 9
3
e =1+ Xy Then
21 3!

= 0.484933035

8888888588888

Example : 49

01 2
Use the power series representation for e* to find approximate value for [ e™ dx.
0

Solution
2 X3 n
e =1+ x+ "=+ = + + = +
21 3l nl
4 6
e =1-x + = X
21 3!
0.1 01 4 3 501
Ie‘xz=I1—x2+x——...dx=x—x—+x— — 0.099667666
) ) 2! 3 10|,

§58888888888
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Example : 50

0.1
Find the Maclaurin series of the function f(x) = sin x, then evaluate, jsin x> dx
0

Solution

f(x) = sinx, f(0) =0, ap =0

f'(x) = cosx, f'(0) =1, a; =1/1

f'(x) =-sinx, f'(0) =0, a, =0

f''(x) =—cosX, f'(0) = -1, az =—-1/3!

f(4)(x) =sinx, f(4)(0):0, a, =0

£ (x) = cosx, &) =1 ag= 1/5!
Then sinx:%—xs—j+x5—5|—

o, 01(y2  x6 410 NI B Y b

gsmx ax = g ETET] + o ...de:3 5 +—O =0.00033333
Example : 51

0.5
Find Maclaurin's series for cosx, then approximate Icos x*dx
0

Solution

f(x) = cosx, f'(x) = —sinx, f"(x) = —cosx, f'"'(x) = sinx, f(4)(x) = COS X
f(0) = 1, f'(0) = 0, f'(0) = -1, f'(0) = 0, f®0) =1
ag =1 a; =0, azz;—ll, az =0, a4=%
Maclaurin series for cos x: cosx = 1 — x2_2' + );—L: o

Replace x by x*to obtain Maclaurin series for cos x* as

, x X8
cos x*=1 - — +—+
214l
05
0.5 0.5 4 8 5 9
Then, | cosx?dx = | 1- 2% 4 X lax ~Ix- X
0 0 21 41 5x21 (9)x 4!
0

~ {0.5— (5 + (0.5° } ~ 0.49688 .
10 9x(24)

§88588888888
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/ZI Frequently-Used Maclaurin Series
7 s "
e =14+ X+ —+ S+t
2! ] nl
3 5
SINX =X - ~ 4+ 5 4 ()"
31 Bl @2n + 1!
2 4
COSX=X———+-— + ... + ()" +
21 41 (2n)!
1 —14x + X2+ X3+, +x
1-x
! = 1-x+X? = x4+ (D" x" -
1+x
2 X3 Xn © 1 n
NA+x)= X - —+ —+ ...+ ()" 2+ = Y ()", -1<x<1
n n=0 n
3 U5 2n-1 " n-1
anlx=x- 2+ X 4 pEpm -y (™ X X <1
3 5 2n -1 n=0 2n -1
Binomial Series
n L (n k
1+ x)" = Z(}x C X <1
k=0lK
n n _ _
where =1 and =n(n 1)l|l<.|(n k+1) for k > 1.
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Exercise (4-6)

(I) Find the Maclaurin series of the following functions

Q) fx)=e<
@ o0 =
(7) f(x) =sin2x

(10) f(x) = cosx® |

2) f(x) = e . (3) f(x) = e

(5) f(x) =sinx , (6) f(X) =cosx.
(8) f(x) = cos 3x , (9) f(X) = xsin2x
(11) f(x)=sin?x . (12) f(x) = sintx

(1) Find the Maclaurin series of the following functions.
D) f(x) =e™> , @ f(x)=cosx , 3) f(x)=tanix , (@) f(x) =cos™x.
Then show that the Maclaurin series represents these functions for all real number Xx.

(11) Find the Taylor series for the following functions at the indicated points
(1) f(x) =sinx; c=n/4 ,and at c=7n/6
(2) f(x) =sin2x; c==n/3 , and at c=n/6

(3) f(x) =1/x; c=3. @) f(x) =1/x?; c=1.
(5) f(x)=cosx; c=m/3. (6) f(x) =cos3x ; c=m/6.
7 f(x) =eX; c=-2 @)f(x) = ;c=-1
(9) f(x) =xe*; c=1 (10)f(x) =cscx; c=2n/3
(11) f(x)=tanx; c=mn/4 (12)f(x):sin_1x;c:n/3
(IV) (a) Find the power series representation for f(x) = ﬁ if. n(1+x) = g(—l)“l x_n"

(b) Use the series in part (a) to approximate In1.21In 1.2 and In 0.9 to three decimal

places and compare the approximation with that obtained using a calculator.

(V) Use the first three non-zero terms of Maclaurin series for tan™ x to approximate the

following,

0.1 0.3
(1) tan? (0.1) , (2) tan™ (05) , (3) |tan! x?dx ,(4) j tan* x? dx
0 0
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(V1) Use the first three non-zero terms of Maclaurin series to approximate the following,

05 , 01 05 3

(1) [cosxdx (2 [sinx“dx (3) [e ™ dx
0 0 0
0.2 1/3 1 0.2 1

(4) [ tanx?dx (5) dx | (6) dx
g) c{ 1+x° -([1+ x*

§88888888888
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HIGHER TECHNOLOGICAL INSTITUTE
Tenth Of Ramadan City
Department Of Computer Science

Subject :(MTHO002 ) model Exam1(midterm)

Question 1:

a- Find an equation of the parabola and the focus that satisfied the given condition

V(4,- 2) , directrixd: y =5

b-  Show that the following function f (X, y) =€’ cos2x satisfy the two-dimensional

Laplace equation:

0% f 0% f

ox? ayzzo

Question 2:

a- For the curve
1- Find an equation of the tangent to the curve, when t = 0.

2- Find—

b-Consider the following parametric curve:

Compute the arc length of this curve

Question 3:

a) Compute the area bounded by the curve -

. X
b)Show that lim ————  does not exist.
=00 ¥ oy
. . 6
c)Describe and sketch the graph of the polar equations, r = ——.
4 —4cosd


lovew
Inserted Text


HIGHER TECHNOLOGICAL INSTITUTE
Tenth Of Ramadan City
Department Of Computer Science

Subject :(MTHO002 ) model Exam2(midterm)
uestion
a)Describe and sketch the conic sections:

: X y°
b)Show that lim XY

does not exist
>0 x2 gyt

Question 2

a)Find the area of the surface generated by revolving of the curve C about x-axis:

b)Describe and sketch the graph of the polar equations, r = L.
4 —coséd
Question3:

a) Compute and sketch the area bounded by the curve

0z oz

b) Find — and — for the following function,
ou ov

z = €e'lny ; X = u®*-=5v, y =Vv:-2u
c)For the cardioid r = 3—-3c0s# with 0<6<2r, find,

1- The slope of the tangent line at@ = 7 /6.

2-The points at which the tangent is horizontal or vertical.



HIGHER TECHNOLOGICAL INSTITUTE
Tenth Of Ramadan City
Department Of Computer Science

Subject :(MTHO002 ) Final Exam

Answer of the following guestions:

[Q1] [10 marks]
a) Discuss and sketch the graph of the equation 4x*+9y *> +64x —18y —71=0. [4 marks]
b) Determine whether the following series is converges or diverges [6 marks]

= In?ia o, P = 4701
D 257 22— 3);(%)!

n=1

[Q2] [10 marks]
_ _ _  &10"x"
a) Find the radius and interval of convergence of the power series Z 0 [6 marks]
n=1 .
b) Find the tangent plane and normal line to the surface x?+2xy —y?+z%=0 at point
P(LLV2). [4 marks]
[Q3] [10 marks]
a) Find the area of the region that is inside the cardioids r =2+2sin@ and outside the circle
r=3. [4 marks]

b) Let C be the curve with parameterization: x =4t?, y =t*—12t
Q) Find the equations of the tangent and normal linesto Cat t =1.

(i)  For what values of t is the tangent line horizontal or vertical? [6
marks]

[Q4] [10 marks]

a) Find the three non-zero terms of Maclaurin series of f (x)=sin™"x to approximate

1

_[ sin"x dx . [5 marks]

0

b) Find the Taylor series of f (x) :l atc=3. [5 marks]

X

[Q3] [10 marks]
a)Find g—z if y =f (x) is determined implicitly by Iny*+e* =sinh(x +y ). [4 marks]
b)Find all local maxima, local minima and the saddle points of the equation

f(x,y)=x>-3xy —-y*+2y —6 [6 marks]
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