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Chapter (1)

System of linear equations

1.1. Matrices

A matrix over a field F (Field of scalars) is a rectangular array of scalars a; of the

form,
all a12 e aln
a,, 8, ... @,
(1.1)
a a a

ml m2

Matrices will usually be denoted by a capital letters and the elements by a small letters as,

A =[a], =123 ...,m, j=12,3 ...,n. (1.2)
The m-horizontal n-tuples(a,,, a,,...,a,,), @y, Appy ooy @yy), . C
(8,qs 8y - - -+ &), are the rows of the matrix and the n-vertical m-tuples,
1 12 n
21 ' 22 1 ) 1 2n ’
a'ml am2 a'mn

are its columns. The element a; is called the ij-component, appears in the ith rows and jth

column.

The matrix A,,, IS a matrix with m rows and n columns and is called m by n matrix.

The pair of numbers (m, n) is called its size or shape.

1.1.1 Basic Definitions

(1) Equality of matrices: Two matrices A and B are said to be equal if A and B have the

same size and the corresponding elements are equal, i.e. if A =[a;] and B = [b;] with

a; =by for 1<i<m, 1<j<n.

(2) Addition of matrices: Let A = [a;] and B = [b;] be of the same size. The sum of A

and B, written A + B , is the matrix obtained by adding corresponding elements of A
and B, that is,



a,+b, a,+b, ... a,+b,

a,, +b a,., +b ... a, +b
A+ B =[aij + bij] _ 21 T M21 22 22 2n 2n . (1.3)

a.+b a.,+b

ml ml m2 m2 mn mn

(3) Subtraction of matrices: Let A =[a;] and B = [b;] be of the same size. The

subtraction of the matrices , written A - B , is the matrix obtained by subtracting the

corresponding elements of A and B, that is,

a;; — b11 a, _b12 cee Ay, _bln
a,, —b a,,—b ...oa,. —b

A—_B :[aij _bij] _ 21 21 22 22 2n 2n . (1.4)
a_.—b a.,—b a_ —b

ml ml m2 m2 mn mn

(4) Scalar multiple of a matrix: Let A = [a;] and ascalar k e F, then the product kA is

the matrix obtained by multiplying each element of A by k:

ka, ka, ... ka,
ka ka ... ka

k A — 21 22 2n (15)
ka,, ka,, ... ka,,

(5) Additive inverse of a matrix: Let A = [a;], then -A is the matrix obtained by replacing

the elements of A by their additive inverses, that is,

—a; —q; ... —q,
—a —a ..o —a

-A = _[aij] = [_aij] = “ # ay (1-6)
—a —a —a

0 ... 0
0

0O =
0 0 . 0



Theorem (1). Let V be the set of all mxn matrices over a field F. Then for any matrices
A B,C eV andanyscalars k,, k, e F

i) (A+B)+C = A+(B+C). (i) A+ O = A

(iii) A+ (-A) = 0. (iv) A+ B=B+ A

) k,(A + B) = kA + k,B. (vi) (k, +k,) A=k A+ k,A.
(vii) (k; k,) A =Kk, (k, A). (vii) LA = A, 0.A=0.

1 -2 3 30 2
Example (1). Let A:{ } and B :{ L ]Then,

1+3 -2+0 3+2 4 -2 5
A+ B = = .
{4—7 5+1 —6+8} { }

A_g |13 -2-03-2] _ [-2 -2 1
" |4+7 5-1 -6-8| |11 4 -14]

A_[30 32 3®]_ [3 -6 9
N {3(4) 3(5) 3(—6)} - Lz 15 —18]

2 -4 6 9 0 6 ~7 -4 0
2A - 3B = - = .
8 10 -12 ~21 3 24 29 7 -36

1.1.2 Matrix Multiplication

Let A = [a;] be amatrix of sizemxn and B = [b, ] be a matrix of size nxp (thatis the

number of columns of A equals the number of rows of B). Then the product AB is the mxp

matrix C = [c, ] where,
Cy = Zaij bjk =y blk + aq; b2k + ...+ a bin . (1-7)
j=1

I.e. to find the element c; (the element in row i and column j of AB) single out row i from

the matrix A and column j from the matrix B, and multiply the corresponding elements from

the row and column together and then add up the resulting products.



Example (2).

i) 1 2][5 6 77 [1*5+2*8 1%6+2*9 1*7+2*10
3 4(|8 9 10| |3*5+4*8 3*6+4*9 3*7+4*10

21 24 27
|47 54 61

(i 1 2]f1 1] [1*1+2%0 1*1+2*2] [1 5]
0 2] [3*1+4*0 3*1+4*2] |3 11]°

i |2 [ 2] [1*141*3 1*2+1%47 [4 6]
3 4] |0*1+42*3 0*2+2*4] |6 8]

o [Jea-[300-1
v) [3 4] m = [B*1+4*2] = [11].

(vi) B :Hcl) _OJ: B ﬂ

From (ii) and (iii) from the above example, we note that,

salba ool e Glea-eaf;

that is the matrix multiplication in general is not commutative, i.e. AB = BA.

Note that : The definition of matrix multiplication requires that the number of columns of the
first matrix A be the same as the number of rows of the second matrix B in order to form the
product AB. If this condition is not satisfied, the product is undefined.

Theorem (2).
() (AB)C = A(BC) (Associative law)

I)A(B+C) = AB+AC (Left distribution law)

(ii
(iii
(V) k (AB)=(k A)B = A (k B) where K is a scalar .

We assume that the sums and products in this theorem are defined.

)(A+B) C = AC + BC (Right distribution law)




Transpose of a Matrix.

The transpose of a matrix A, denoted by A", is the matrix obtained by writing the rows of A,

in order, as columns:

all a12 a1n a11 a21 aml
a21 a22 a2n _ a12 a‘22 a'm2
a am2 amn a'ln a‘2n a‘mn

In other words, if A = [a;]is a matrix of size mxn, then A" = [ag] is the nxm matrix,

where a; = a; foralliandj.
Note that the transpose of a row vector is a column vector and vice versa.

The transpose operation on matrices satisfies the following properties:

Theorem (3).
i (A+ B =A" + B’ (i) (A")" = A

(i) (AB)” = BT AT (iv) (kAT =kA" (k a scalar)

Note that in (iii) the transpose of a product is the product of transpose, but in the reverse

order.
Example (3)
Find A B using the given partitioning for A and B,
1 -2 30 Lo
0 2
A=|1 -1 0 2|, B =
1 0
0 3 1-1
-2 -1



Solution.

AB=

1.1.3 Square Matrices

A square matrix is a matrix with the same number of rows as columns. An nxn square matrix
is said to be of order n and is called an n-square matrix.
The square matrix obey all the above properties of matrices (addition, multiplication,

transpose, ., ., .).

Commuting matrices. Two matrices A and B are said to commute if: AB = BA.

"

s dlo o) loalls 3]

The two matrices

11
: {0 2} are not commute, since

5

4 .
are commute, since
6 J

w
EEN V)

1 2][5 4] [5 47[1 2] [17 26
3 4|6 11| |6 11]|3 4] |39 56]°

N




11
Example (4). Find all matrices My, that commute with A = {0 J.

X
Solution. Let M =L ﬂ then

X+ 2z +t X X+
AM = y and MA = y.
z t Z 7+t
Set AM = M A, to obtain the four equations
X+Z=X, y+t=x+Yy, 2=1, t=z+t.

From the first or last equation, z =0; from the second equation, x=t. Thus M is any

o)

Diagonal, Trace and Identity matrix.

matrix of the form,

Let A = [a;] be an n-square matrix. The diagonal (main diagonal) of A consists of

the elements a..

1<i<n, e a,a,,...,a

nn*

The trace of A, written tr A, is the sum of the diagonal elements, that is,

trA=a,+ ay,+...+a, = >.a. (1.8)
i=1

The n-square matrix with 1's on the diagonal and 0's elsewhere, denoted by | or simply I, is

called the identity (unit) matrix.

0
01 ...0

| = (1.9
0 0 ... 1

The matrix | is similar to the scalar 1 in that for any matrix A (of the same order),
Al = 1A = A. (1.10)
More generally: If B isan (mxn) matrix, then,
BlI, =B and | B =B.

n m



Theorem (5).

Let A =[a;] and B = [b;] are n-square matrices and Kk is a scalar. Then

M tr (A+B) =tr A+ trB, (i) tr KA = k*tr A,  (iii) tr AB = trBA.

1.1.4 Invertible (Non-Singular) Matrices

A square matrix A is said to be invertible (or non-singular) if there exist a matrix B
such that:

AB =BA =1,
where | is the identity matrix. Such a matrix B is unique. The matrix B is called the inverse of

A, and is denoted by A™'. Observe that the above relation is symmetric, that is, if B is the
inverse of A, then A isthe inverse of B.

Example (5).

2 5 3
Let A = and B = . Then
1 3 -1
-5 -10 + 10] 10
AB = = = 1.
H - { 3 sl

i - 15 — 15] 10
BA = = = 1.

i }{ } {2+2 —5+6_ {O 1}

Thus, A™* =B and B™ = A, i.e. A and B are invertible.

Note that it is enough to prove that AB=1 or BA=1 to show that A and B are

invertible.
Example (6).
1 0 2 -11 2 2
Let A={2 -1 3| and B =| -4 0 1|. Then,
4 1 8 6 -1 -1

-11+0+12 2+0-2 2+0-2 1 0O
AB =|-22+4+18 4+0-3 4-1-3|=|0 1 0|=1.
—44 -4 +483 8+0-8 8+1-8 0 01

Thus, A™* =B and B™ = A, i.e. A and B are invertible.



Special Types of Square Matrices.

Diagonal Matrices.

A square matrix D = [dijJ is diagonal if its non-diagonal elements are all zero. For

example,
2 0 0O
2 0 O
1 0 0 -1 00
; 0 3 0}, :
0 3 0O 0 0O
0 0 -1
0O 0 0 3
The diagonal matrix may be notated as D = diag (d,;, d,,,...,d,,), where some or all of
d. may be zero. The above matrices may be written, respectively, as
diag (1, 3), diag (2, 3, -2), diag (2, -1, 0, 3) .

Note that any two n-diagonal matrices commute.

Triangular Matrices.
A square matrix A =[a;] is an upper triangular matrix or simply a triangular

matrix if all elements below the main diagonal are equal to zero, that is

a; =0, for i> j.Forexample

a1 1 al 2 al 3 a1 4
al 1 al 2 al 3

a‘ll a‘lZ O 0 a22 a23 a24
0 a,|’ 8 | 0 0 a. a,|
22 0 O a33 33 34

0 0 0 a,

A square matrix A is an upper triangular matrix if all elements above the main

diagonal are equal to zero, thatis a; =0, for i< j.Forexample

a, 0 a,, a, O 0
' a21 a22 O '
a21 a22



9 0
Example (7). Find a lower triangular matrix A such that A? :{ 15 4]

2

0
Solution. Set A = X . Then A? = X 0 .
y z (x+2)y z°

. X2 0 9 0 .
Since .| = , We obtain,
(x+2)y z -15 4

x*=9, z°=4 and (x+z)y=-15.Thus x=+3, z=4+2.
From the third equation,

if x=3,z2=2 =>y=-3, if x=-3,z=-2 =>y=3,
if x=-3,z2=2 = y=15, if x=3,z=-2 = y=-15.

Hence, we have four matrices,

A A A el P A

Symmetric Matrices.

A square matrix A =[a;] is symmetric if A" = A, that is, each a; = a

ji -
A square matrix A =[a;] is skew-symmetric if A" =—A, that is, each a; =—a;. In the

skew-symmetric, the diagonal elements must be zero since a,; = —a,; .

Example (8).
2 -3 5 0 3 -4 2 4 2
A=(-3 6 7|, B=|-3 0 2], cC=|-4 3 1
5 7 -8 4 -2 0 -2 -1 2

The matrix A is symmetric and the matrix B is skew-symmetric, while C is neither

symmetric nor skew-symmetric.

Exercises 1.1

1 2 3 1 -1 2
@ If A:{ } and B:{ } , compute,

4 5 6 0 3 -5
i) A+ B (i) 3A (iii) 2A-3B
6 4
(2) Find x,y,z,and w if: 3{)( y} = {X }L { x+y} .
zZ w -1 2w x+y 3

10



(3) Find AB and BA if exist, for the following matrices,

1
i) A=[1 2 3 -2], B=|3
0
i) A=fL -3 1 -2], B=[1 2 -2 -2].
(iii) A:F 3] B:F 0 _4]
2 -1 3 -2 6
2 -1
. 1 -2 -5
(iv A= 10 |, B:{ }
3 4 0
-3 4
2 -1 0 6
2 3 -1
(v) A{ } B=|1 3 -51
4 -2 5
4 1 -2 2

1 20
(4) Find AA" and A" A, where A = {3 . 2]

6 Let A:F 2}, B:F 2}
4 -3 3 -1

(a) Find A? and A®. (b) Find f(A), where f(x) = 2x® —4x + 5.
(c) Find g(B), where g(x) = x* — x — 8.

5 2
(6) Let A = {O k}' Find all numbers k for which A is a root of the polynomial

(@ f(x) =x*-7x+10, (b) g(x) = x* — 25, (©) h(x) =x* -4,

(7) Show that (A —kl1) and (B —kI) commute for every scalar k if and only if A

and B commute.

(8) For the following matrices, showthat AB = B A =1,

11



1 2 3 -40 16 9
A=(2 5 3| B=| 13 -5 -3].
1 08 5 -2 -1

8 -57
(9) Find an upper triangular matrix A such that A® = {O 97 }

1.2 Determinants

Each n-square matrix A = [aijj is assigned a special scalar called the determinant of

A, denoted by det [A] or |A| or as nxn array of the scalars a; enclosed by straight

lines,
a, a, ... a,
aZl a22 et a2n
a, a, ... a,

This form is called determinant of order n.

We begin with the special case of determinants of orders one, two, and three. Then we

define a determinant of arbitrary order.

Determinants of orders one and two.

Determinants of orders one and two are defined as follows,

lay, | = ay, . (1.11)

a;, a,
= 8,8, — a;,a. (1-12)

ay; Ay

Example (9). Find the determinants of the following matrices,

() 4] Gi) [-6] i) E ﬂ (iv){2 4}

3 6

Solution.

(i) 24 = 24 (ii)|-6 =6

.. 12 1
(iii) = 2*3-1*4 =6-4 = 2.
4 3

2 4
(iv) = 2%6 - 4*3 =12 — 12 = 0.
3 6

12



Determinants of order three.

Consider the arbitrary 3x3 matrix A= [aij |- The determinant of A is defined as follows,

Y% Gl g a + 8,,8,,8, + 8,,8,a
det A — a21 a22 a23 1172233 2723731 1321732 (113)

2. a, a, — 8,38,,85; — 8,8,,85;, — 8;,8,585,-
Observe that there are six products, each product consisting of three elements of the original
matrix. Three of the products are plus-labeled (keep their sign) and three of the products are
minus-labeled (change their sign).

These six products may be obtained by many techniques.

Method (1).

The determinant of the 3x3 matrix A= [aijj may be written as,

&1 &, A &1 &, a3 a1 8, a3 a1 8, ag
det A= Ay Gy Ay | =8y |8y 8y Ay | T8y |8y 8y 8y | F85 |8y dy Ay
83 83 dg 83 83 dg d3; 83 dg 83 83 dg
a a a a a a
= a, 22 23| " 21 23| | a, 21 22 (1.14)
83 g3 83, 843 83 8y

= 80185,833 T 1585383, + 81385183y — 138,83 — A1p8p 833 — 84385383, -
The determinant of the 3x3 matrix may be written as a linear combination of three
determinants of order two whose coefficients (with alternating signs) form the first row of the
given matrix A.
Note that each 2x2 matrix can be obtained by deleting, in the original matrix, the row and

column containing its coefficient.

Method (2).

We can use the following diagrams to write det [A] as the sum of the products of the
elements along the three plus-labeled arrows plus the sum of the negatives of the products of
the elements along the three minus-labeled arrows. There is no such diagrammatic device to

remember determinants of higher order.

all alZ alS all alZ alS
aZl a22 a23 aZl a22 a23
a31 a32 a33 a31 a32 a33

13



Method (3).

We can also obtain det [A] as follows. Repeat the first and second columns of A as shown
below. Form the sum of the products of the elements on the lines from left to right, and

subtract from this number the products of the elements on the lines from right to left.

ail alZ a13 all alZ
aZl a22 a23 a‘21 a22
a31 a32 a33 a3l a32

We will use method (1) for the solution and the students can verify the result by methods (2)
and (3).

Example (10). Find the determinants of the following matrices,

1 2 3] 1 3 2
i A=j2 1 3 (i) B={4 -2 3
3 1 2 0 5 -1
Solution.
(i) det A 11 3 2 23 +32 1(2-3) —2(4-9) +3(2-3)
= —_ — p— pa— p— + J—
1 2 3 2 3
=1(-1) - 2(-5 + 3(-1) = 6.
-2 3 4 3 4 -2
(i) det B =1 -3 +2
5 — 0 - 0 5

=1(2 - 15) —3(~4 — 0) +2(20 — 0)
= 1(-13) — 3(-4) + 2(20) = 39.

Determinants of arbitrary order.
Method (1) above may be generalized to find det [A] for any arbitrary order. This method

will be discussed after the properties of the determinants.

1.2.1 Properties of Determinants.

We now list basic properties of the determinant.

Theorem (7). The determinants of a matrix A and its transpose AT are equal, i.e.

A = |aT]

14



Example (11). For the matrix A in the above example,

. AT =12-3-2(4-3)+3(6-3) =6 =|A.

Theorem (8). Let A be a square matrix.
(i) If A has arow (column) of zeros, then |Al = 0.
(i)
(iii)

If A has two identical rows (columns), then |A = 0.

If A is triangular, i.e. A has zeros above or below the diagonal,

|Al = product of diagonal elements. Thus |[I| = 1.

Theorem (9). Let B is obtained from A by an elementary row (column) operation.

(i)
(ii)
(iii)

If two rows (columns) of A were interchanged, then, |B| = —|A.
If a row (column) of A was multiplied by a scalar k, then, |B| =k |A|.

If a multiple of a rows (column) with added to another row (column), then,

Bl = A

We now state the most useful properties in the following theorem.

Theorem (10).
()

If A isinvertible,i.e. A hasaninverse A™, then |A = 0.

(i)  If the product AB exist, then |A B| = |A[|B| .

Example (12). Show that: |A B| = |A [B|, where Aand B in example (10).

Solution. From example (18), |A = 6, |B| = 39. Then |A|B| =234.
Now,

15



1 2 3|1 3 2 9 14 5
AB=|2 1 3| |4 -2 3| =|6 19 4
31 2|0 5 -1 717 7

Then,
|AB| =9(65) —14(14) + 5(-31) = 234 = |A||B|

Example(13). Find the determinant of each of the following matrices,

5 3 4 6 5 6 7 6 2 3 4 5
0 00O 1 5 3 0 -3 7 -8
i) A= : i) B= : i) C= _
M) 1 2 2 8 (i) 4 9 3 9 (i) 0 5 6
8 5 4 4 2 7 8 7 0O 0 0O 4
Solution.

(i) Since A has a row of zeros, det A =0.
(it) Since the second and fourth columns of B are equal, det A=0.
(iii) Since C is triangular matrix, det (C) is equal to the product of the diagonal elements.

Hence det (C) =-120.

1.2.2 Gaussian Elimination Algorithm for Determinants

Here A=la, | is anonzero n-square matrix with n > 1.
Step (1). Choose anelement a; =1 or, if lacking, a; = 0.
Step (2). Using a; as a pivot, apply elementary row (column) operations to put 0'sin all the
other positions in the column (row) containing a; .

Step (3). Expand the determinant by the column (row) containing a; .

Remark (1): This algorithm is usually used for determinants of order four or more. For

determinants of order less than four use the previous used method.

Example(14). Use the above algorithm to find |A| for he matrix,

16



5 4 2 1

2 3 1 -2

A =
-5 -7 -3 9
1 -2 -1 4

Solution. Use a,, as a pivotto put 0's in the other positions (using row operations),

5 4 2 1 1 -2 0 5
s 3 1 s , . ~2R,+R, > R,
A = = by using 3R, +R,— R, .
-5 -7 -3 9 1 0 2 3
1 -2 -1 4 3 0 2 R +R >R,

Now we expand the third column, we may neglect all terms contains 0. Thus

1 -2 0 5 L o &
243 3 1 -2
A = (-) . o a3 =" 1 2 3 = —[1() +2(-7) +5(-5)] = 38.
3 1 2
3 0 2

Minors, Cofactors and Adjoint matrix.

Consider an n-square matrix A = [aijj. Let M, denote the (n-1)-square submatrix of A
obtained by deleting its ith row and jth column. The determinant ‘M ij‘ is called the minor
of the element a; of A, and we define the cofactor of a;, denoted by A; to be the

“signed” minor:

Aij = (_:I-)i+j Mij"
Now, we can write the matrix of cofactors of A as,
A Ay o A
A, A, ...
Cofactors A = | ** 7% Aan .
A A o A,

We can define the adjoint matrix, denoted by adj A, as the transpose of the cofactors of A:

A A Ay
i AP A Aa
Ain A2n Ann

17



Theorem (11). For any square matrix A, 1 is the identity matrix,

A.(adjA) = (adjA). A= |Al.

Theorem (11) gives us another method of obtaining the inverse of non-singular matrix.

Theorem (12). For any square matrix A, if |A =0 ,then

1

A

A (adj A).

Example(15). Find the inverse matrix for the matrix, A = L 3}

Solutions. The cofactors of the four elements are,

A11 = +|3| =3, A.'LZ = _M =-1 A21 = _|5| =-5 Azz = +|2| =2

3 - 3 -5
Cofactor of A= , adj A = , |A=6-5=1
-5 2 -1 2
3 -5
Then, At =
-1 2
1 0 2
Example(16). Find the inverse matrix for the matrix, A =2 -1 3].
4 1 8

Solution: The cofactors of the nine elements are,

A — 1 3_ 11 A 2 3_ 4 A — 2 1—6
! 1 8 ’ ? 4 8 ’ s 4 1 ’
0 2 1 2 1
! 1 8 ' 2 4 8 ’ ’ 4 1 ’
=+ =2 = =1 =+ =-1
Ay = 1 3/ “ Ay, = 2 3|~ ™ Ay = =74

18



-11 -4 6 -11 2 2
Cofactor of A=| 2 0 -1{, adjA=|-4 0 1
2 1 -1 6 -1 -1

Al = 1(-12) +2(6) = 1.

-1 2 2
Then, A= | -4 0 1
6 -1 -1
2 3 -4
Example(17). Find the inverse matrix for the matrix, A =0 -4 2 |.
1 -1 5

Solutions. The cofactors of the nine elements are,

A1—+_42—18 A1_02_2 A1—+O_—4
S - > h s 7 o1
I T i M ou S
Pa== | =71 A= =1 A=l =5
R T S I o8l
M=ty o |77 ATy T ATy T8
-18 2 4 -18 -11 -10
Cofactor of A=|-11 14 5], adj A=| 2 14 —4 |,
-10 -4 -8 4 5 -8
A = 2(-18) +1(-10) = —46 .
(9 11 5]
-18 -11 -10 23 46 23
Then, A™ :i 2 14 —4| = -1 -7 2
—46 23 23 23
4 5 -8 -2 -5 4
|23 46 23]

Exercises 1.2

(2) Find the determinants of the following matrices,

o R N <[5 )

-2 3

O
I
|
|
M
I
o o N



1 2 2 3 5 6 7 6

1 0 -2 O 1 -3 5 -3
M = , N = .

3 -1 1 -2 4 9 -3 9

4 -3 0 2 2 7 8 7

(2) Find the inverse matrix for the following matrices, if it exist,

1 11 2 3 -1 111
A=|2 3 4| B=[3 5 2 |, cC=|1 2 1].
58 9 1 -2 -3 11 3
(3) Without expanding the determinant, show that,
1 a b+c
1 b a+c|=0.
1 ¢ a+b
(4) Find the inverse of the following matrices,
1 2 -4 1 3 —4]
3 5
A={2 3] B=|-1 -1 5]/, C=|1 5 -1},
2 7 -3 3 13 -6
1 3 -2 2 1 -2 1 -2 0]
D=|2 8 -3]|, M=|5 2 -3, N=[2 -3 1].
17 1 02 1 1 1 5

1.3 Solution of Linear Systems of Equations

We are going to look at techniques for solving linear systems of equations
using matrices; it is called direct methods. A matrix derived from a linear system
of equations, each in standard form, is called the augmented matrix of the
system. The augmented matrix corresponding to the system of n linear algebraic
equations
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a X + a5, Xy ot X, = b

1n“*n

ay X, + ay X, +....+ a, X, = b, (1-15)
Ay X, +a,X, + ...+ a,Xx, = b,
IS given by the nx(n+1) augmented matrix
a, 4, a,| b
[A B]— a‘21 a22 aZn b2
: : (1.16)
anl an2 ann bn

Each row of the augmented matrix represents one equation of the system. In
each row, the coefficient of x, is in the first column, the coefficient of x, is in

the second column, the coefficient of x, is in the i— th column, and the constant

Is in the last column.

Equivalence and Elementary Row Operations

A matrix A is said to be row equivalent to a matrix B , written A ~ B, if B can be obtained
from A by a finite sequence of the following elementary row operations:

[E,] (Row-interchange) : Interchange the ith row and the jthrow : R, <>R;.
[E,] (Row-scaling) : Multiply the ith row by a nonzero scalar k: kR, —>R,, k #0.
[E;] (Row-addition) : Replace the ith row by k times the jth row plus the ith row:

kR, +R, >R, .

To solve a system of equations using the augmented matrix, we will use
matrix row transformations to convert the augmented matrix into upper
triangular form.

The following matrix is an upper-triangular form of the augment matrix (1.16):
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[aBl=|. | . df“ (1.17)

To obtain an upper-triangular form of an augmented matrix using matrix row
transformations, we begin with the augmented matrix. We then use row
transformations to obtain an equivalent matrix with ones in the diagonal and
zeros below the diagonal. We will proceed column by column from left to right.
In each column, we will start by obtaining a one in the diagonal position; then
obtain zeros below the one.

Remark: The element we aim to be one is called pivot element (pivot) and its
row is called pivoting row. To reduce the round off error in the transforming the
augment matrix, we may rearrange the rows (or the equations before forming the
augment matrix) to have the pivot of the first row as one, if it is possible. In the
next steps, it is preferable to change the row under consideration with any row
below it to make the pivot equal one. If the pivot equals zero and all the
elements below it are zeros, the system either does not have unique solution nor
has no solution.

1.3.1 Gauss Elimination method

This method is based on transforming the augmented matrix into a triangular
one; write down the corresponding linear system of equations, which can be
easily solved by back substitution. In the present approach, we use the upper
triangular matrix. If we have the system of equations (1), the equivalent linear
system, for which the triangular matrix is the associated augmented
matrix,(1.17) is
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X, + dpp X, +d X +...+ dp X, = ¢

In“*n
X, + Uy Xy +...+ d, X, = C,
: (1.18)

Xn—l + dn—l,n

X, = Chy
X C

n n

which can be easily solved by back substitution in which we evaluate x, from

the last equation, and then evaluate x,,_; using x, and so on, that is;
Xp = Cp, Xp-1= Cn—l_dn—l,nxn’

Xn_2= Cn—2_(dn—z,n—lxn—1+dn—2,nxn)y“'
In general, we can write
X= ¢ — >d x;, i=nn-Ln-2,n-3;--,21 (1.19)
j=i+1

which is useful algorithm for computer programming.

Example (18): Solve the equations

—2X+Yy—2=-2, 2X-y+2=5  —x+2y+2z=1
Solution: We begin by writing the system as an augmented matrix

1 1 -1 -2
[AB]=A=| 2 -1 1
-1 2 2| 1

We already have a one in the diagonal position of the first row. Now we want
zeros for the elements in the first column below that one. The first zero can be
obtained by multiplying the first row by (-2) and adding the results to the
second row. The second zero can be obtained by adding the first row to the third
row, note that the first row is unchanged. We use elementary row operations to
transform this matrix into a triangular one as follows:
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1 1 -1 =21 1 1 -1| -2
A= 2 -1 1| 5|=]|0 -3 3 9
1

Thus we have the system of linear equations
2=2, y—-1=-3  X+y-z=-2
Back substitution gives the solution as:

7= 2, y=2-3=-1 Xx=-y+12z-2=1

Example (19): Solve the equations

X+4y+4z=7, x-y-2z=2, 2Xx-3y+6z=5
Solution: It is better to rearrange the given equations to be
X—y—2z=2, 3X+4y+4z=7, 2xXx—-3y+6z=5
Forming the augmented matrix

1 -1 -2 2] 1 -1 -2 2
[AB]=A=|3 4 4| 7|50 7 10| 1
2 -3 6| 5|0 -1 10| 1

1 -1 -2 2 1 -1 -2 2
A=l0 1 10/7| 1U7|=0 1 10/7] 17
0 O 8o0/7 8/7 0 O 1 1/10

Thus we have the system of linear equations
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z=01, y+10z/7=1/7, x —y-2z=2
Back substitution gives: z=.1, y=0, x= 2.2

Example 20.
Solve the system of linear equations given by

X—y—-3z=-2, 3X—y—-2z=], 2X+3y—5z=-3
Solution:
Using the Gauss elimination method, we obtain the following sequence of equivalent
augmented matrices:
1 -1 -3 -2(|1 2 -3 -2
[AB]=A=[3 -1 -2 1|=j0 -7 7| 7
2 3 -5 -3/|0 -1 1 1

1 2 -3 -2/|1 0 - 0
A=0 1 -1 -1|5f0 1 -1 -1
0 -1 1 1 0 0 O 0
The last augmented matrix is in row-reduced form. Interpreting it as a system of linear
equations gives
y—-z=-1
Xx—2=0
a system of two equations in the three variables x, y, and z
Let’s now single out one variable—say, z—and solve for x and y in terms of it. We obtain
X =1z,
y=z-1
, If we set z=t, where t represents some real number (called a parameter), we obtain a
solution given by (t, t - 1, t). Since the parameter t may be any real number, we see that the
System has infinitely many solutions.
Example 21:
Solve the system of linear equations given by
X+y+z=1, 3X—y—z=4, X+5y+5z=-1
Solution:
Using the Gauss elimination method, we obtain the following sequence of equivalent
augmented matrices
1 1 1 1 1 1 1
[AB]=A=[53 -1 -1 4|=[0 -4 -4 1
1 3 5 -1 |0 4 4 -2
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1 1 1 1
A=|0 -4 -4 1
0O 0 © -1
Observe that row 3 in the last matrix reads 0x + 0y + 0z = —1that is, 0=1!

We therefore conclude that the System is inconsistent and has no solution,

1.3.2 Gauss — Jordan Elimination method

Another version of Gauss Elimination method is Gauss — Jordan Elimination
method. In this method, we use the matrix row transformations to convert the

augmented matrix into unitary form [1|D] where D=[d;,d,,---,d,]". Then we

obtain the solution directly as x; =d;,x, =d,---,x,=d,.

Example (22): Solve the equations by Gauss Jordan method

X+Yy+2=0, X-2y+2z=4, X+2y—-z2=2

Solution: We begin by writing the system as an augmented matrix

1 1 1] o]t 1 1| o] 1 1
[A|B]=A=[1 -2 2| 4|0 -3 1| 4|=0 ~2| 2
1 2 -1 2/|0o 1 -2 2|0 -3 1
10 3| -2] [1 0 o] 4
A={0 1 -2 2|=|0 1 0| -2
0 0 -5 10| [0 0 1| -2

Thus the solution is x=4, y=—2, z=—2

Gaussian_Elimination Algorithm for Inverse. This algorithm either finds the

inverse of an n-square matrix A or determines that A is not invertible.
Step 1. From the nx2n matrix M = [A:1]; thatis, A is in the left half of M and the identity
matrix | is in the right half of M.
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Step 2. Row reduce M to echelon form. If the process generates a zero row in the A-half of M,

STOP (A is not invertible). Otherwise, the A-half will assume triangular form.
Step 3. Further row reduce M to the row canonical form M = [l : B], where I replaced A in
the left half of the matrix.

Step 4. Set A" = B.

2 5
Example (21). Find the inverse matrix of A = L 3]

Solution. First we form the block matrix M = [A: 1] and reduce M to echelon form,

2 5 : 10 13 : 01
M = , R <R, M ~ . —2R +R, =R,;
13 : 01 25 : 10

1 3 : 0 1]3R,+R—>R 10 :3 -5
M~[ } 2T M }:[ISA‘l].

0 -1 : 1 -2|] -R,»R, ' 01 :-1 2
Then,
At o ® _5_.
-1 2]
1 0 2
Example (23). Find the inverse matrix of A =]2 -1 3|.
4 1 8

Solution. First we form the block matrix M = [A: 1] and reduce M to echelon form,

1023100ZRRR 1 0 2: 1 00

: -2R +R, — :

M=|2 -1 3: 010 4R1 R2 RZ;M~O—1—1:—210
4 1 8: 00 1| Tt 01 0: -4 0 1

10 2: 1 00

. -R;+R, - R,
R,+R;, »>R;; M~|0 -1 -1: -2 1 0 ;
, 2R, +R, - R,
0 0 -1: -6 11
1 0 0: -11 2 2
. -R, >R,
M~0 -1 0: 4 0 -1 ;
. -R; >R,
0o 0 -1: -6 1 1
100 -11 2 2
M~010: -4 0 1|=[:aA"
0 01 6 -1 -1
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Then,

-11 2 2
At =|-4 0 1/
6 -1 -1

1.3.3 Solving the system of linear equations using matrix inverse

Now, for the linear system Ax =Db, where A is a nxn square matrix(coefficient matrix), b
iIs a nx1 vector(constants) and x is a nx1 vector(variables), suppose there exists a matrix

A7 such that A*A=1_=nxn identity matrix. Then,

AX — b multiplybothsidebyA’1 N A—lAX — A—lb N In X = A—lb -5 X = A—lb

Example(24)
3X, +2X, —=9X; =7

X, —8X, +4%, =9 = |1 -8 4 |x|=|9

2% +6X, =Xy =-2

3 2 -5 X,
= Ax=b, whereA=|1 -8 4 | x=|X,| and b= .
2 6 -7 X, 2

Example(25). Solve the following system of equations by matrix inverse:

1 —1 —2 x 1
Solve for the linear system Ax = 2 —3 —5| x%x, |[=| 3
—1 3 5 X3 —2

Solution:
0 1 1 1 0 1 1|1 1
A'=|5 -3 -1|=>x=A"3|=|5 -3 -1| 3 |=|-2
-3 2 1 -2 -3 2 1|-2 1
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Example (26). Solve the following system of equations by matrix inverse:

X+y—z=12
2X—y+2z=-3
X+2y—-2=6

Solution: We have the following matrix system

1 1 -1\x 12 1 1 -1
2 -1 2 ||y|=|-3]|, checkfordetj]2 -1 2 |=4

1 2 -1)\z 6 1 2 -1
27
x) (1 1 -1\'(12 3 1 -1\(12) | 1
yl=l2 -1 2 —3=%—404—3=—6
z) \1 2 -1) |6 -5 1 3)\6) | 45
4

Exercise 1.3

1-Find the solution of the following systems of linear equations using

(i) Gauss elimination method.
(i) Gauss-jordan elimination method.

(iii) Inverse matrix method
2x—-3y=5
a) y
3x—-2y=10

X+y+z=4
b) <3x+3y+z=7
Ax+2y+2=7

2- Find the inverse of the following matrix using Gauss elimination method

3 5 1 2 -4 1 3 -4
A={ 5 3] B=(-1 -1 5], C=|1 5 -1
2 7 -3 3 13 -6
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3- Find the solution of the following systems of linear equations using

Gauss -elimination method. Define the type of solution
a- b-

x—2y+3z=9
x+3y— z=4

x—5y—3z= 10 X+ 5y -4 =2
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Chapter (2)

Transcendental Functions

2.1 Inverse Functions

In mathematics the term inverse is used to describe functions that are reverses of one another

in the sense that each undoes the effect of the other.

One-to-one Functions

A function is a rule that assigns a value from its range to each point in its domain. Some
functions assign the same value to more than one point. Other functions never assume a given

value more than once. A function that has distinct points is called one-to-one.

Definition A function f(x) is one-to-one on a domain D if :

f(x,) = f(x,) whenever X, # X, .

Example (1) The function f(x) =+/x is one-to-one on any domain of non-negative

numbers because:

\/x_l = \/x_z whenever X, # X,.

Example (2) The function f(x) = x* is one-to-one on any domain of real numbers because:

X, =X, whenever X, # X,.

Example (3) The functions f(x) = x* and g(x) =sinx are not one-to-one on the domain
of real numbers because:

f(-a)= f(a)=a? and g(z/4)=g@z/4)=...

The Horizontal Line Test

A function y = f(x) is one-to-one if and only if its graph intersects each horizontal line at

most once.

31



L 1o

X

(iii) (iv)

The graphs in (i) and (ii) meets each horizontal line at most once and the graphs in (iii) and

(iv) meets the horizontal line at more than one point.

Definition

If the functions f and g satisfy the two conditions

g(f(x)) = x forevery x in the domain of f
f(g(x)) = x forevery x in the domain of g

then we say that f and g are inverses.

Moreover, we call f an inverse function
of g and g an inverse function of f. Domain of f Range of f

It is more convenient to write the

inverse function of f as f .

. . I i el
A function f has aninverse f *ifitis Range of f ! Domain of f

one-to-one function.
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Example (4)

Is the following functions are inverses to each other?

y =2x-2 and y:%x+1.
Solution Let f(x) = 2x-2 and g(x):%x+1
1
g(f(x)) = g(2x - 2) :E(ZX—Z) +1=x.
1 1
f(g(x) = f(zx+1) = 2(§x+1)—2 = X.

Then the two functions y = 2x -2 and y= % X + 1 are inverses to each other. Also, we

notice that:

Rangeof f. and

Domainof f*

Domain of f.

Range of f™

Finding Inverses
To express the inverse function f ™ as a function of x, we use the following steps,

Step 1. Solve the equation y = f(x) for x in terms of y. R X

Step 2. Interchange x and y. The resulting formula

willbe y = f.

The graph of f ™ can be obtained by reflecting

the graph of the function f about the line y = x.

Example (5)
Find the inverse of the following function

- 1 2 - 1 - 3
()] y=§(x + 2) (||)y=§x+1 (i) y=x

Solution.
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(i) y:%(x2+ 2) = x=43y —2= f*(x)=,3x -2

(ii) y:%x+1 = X=2y-2 = f*x) =2x- 2.

i) y=x* = x =3y = f1(x = ¥x.

@
3 yer

Gy
5
|

-

(i) (i) (iii)

Exercises (2.1)

For each of the following functions, find f , identify the domain and range of f . Sketch

the graph of fand use a reflection to sketch the graph of f .

(1) f(x) =x*+1 (2 f(x) =x°
B) f(x) =x*; x>0 (4 f(x) =1/x*; x#0
(5) f(x) =x*+1; x=0 (6) f(x) =x*; x>0

2.2 Natural Logarithmic Function

The most important function-inverse pair in mathematics and science is the pair consisting of

the natural logarithmic function Inx and the exponential function e*. The key to

understanding e” is Inx, so we introduce Inx first.
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Definition

The natural logarithmic function denoted by In , is defined by

|n(x)=j dt x>0,
1

If x>1, then Inx isthe area under the
curve y =1/t fromt=11to t=x.
For 0 < x <1, Inx gives the negative of

the area under the curve from x to 1. The

function In x is not defined for x <0.

We also have,

In@ = j

2.2.1 Derivative of Natural Logarithmic Function

From the fundamental theorem of calculus, we know that:

k y=Lnx

d X
&j fitydt = f(x).

Bl 1 13 3 4 b

dt :1; Xx>=0.
X 2

Then, i Inx = i _[
dx dx 9

Since the derivative of In x is positive for every

—

x > 0, then the function y = Inx is continuous ;

and increasing throughout its domain. Moreover the second derivative is —1/x*, which is

negative for every x > 0. Hence the graph of y = Inx is concave-down on (0, o)

If u=u(x), is a differentiable function of x, whose values are positive, so that Inu is

defined. Then applying the Chain Rule,

d d du 1 du
—Inu=—Inu.— == — .
dx du dx u dx

So, we obtain the derivative in the form,
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d 1 d 1
— Ihx ==, and — Inu = =
dx X dx u

It is more convenient to write the last expression as

a4 In[f(x)] 1109

f(x)

Example (1) Find dy/dx for the following functions,

i) y=In(x* +1) (i) y =In(tanx) @iii) y=In(In(x))
Solution

(ii) % _ %In(tanx) ixa(t nx) = St‘;c:XX

(i) % = %In(lnx) = Iidi(lnx) = Iy

Example (2) Find dy/dx for the following functions,

(i) y=InInIn(x) (if) y =sin(Inx)
Solution
(i)ﬂ =ilnlnlnx:ii(lnlnx) ! iiI nx
dx dx InInx dx Ininx Inx dx
N N
“Ininx nx'x* x (Inx)(In(Inx))

cos (Inx)

i Y 4 - 4 g =
(i) o dx sin(Inx) = cos(In x) i (Inx) =

Properties of Logarithmic Function

For any numbers x>0, y >0,
1. Product Rule: In(xy) = Inx + Iny.
2. Quotient Rule: In(x/y) =Inx —Iny.

3. Power Rule: InxY = ylInx.

4. Reciprocal Rule: In(1l/x) = —Inx.




Sometimes it is useful to use the above properties before differentiation,

Example (3) Find dy/dx for the following function,

n (x* -=1° Jx+3

(x* + 1)°

Solution Use property (2),
y=In(x*-1° Jx+3 — In(x® + 12 Use property (1),
y=In(x* -1 + In(x+3)"* — In(x* + ).  Use property (3),
y=3In(x* -1 +(@/2) In (x+3) — 2In (x> + 1). Now differentiate

dy — 3(2x) 11 _2(3x%) _ 6x N 1 S
dx  x* -1 2 X+3 x*+1 x*-1 2(x+3) x*+1

2.2.2 Logarithmic Differentiation

The derivative of positive functions given by formulas that involve products,
quotients, and powers can often be found more quickly if we take natural logarithmic of both
sides before differentiating. The following steps describe the method of solution,

Given: y = f(x)

Step (1) Take Logarithmic function of both sides : Iny = Inf(x).
Step (2) Differentiate both sides w.r.t. x: di Iny = di (In f(x)) .
X X
: dy d
Step (3) Solve for dy/dx: — =y — (Inf(x)).
dx dx
: dy d
Step (4) Replace y by f(X): — = f(xX) — (Inf(x)).
dx dx

We can use the result obtained in example (2) in the following example.

Example (4) Find dy/dx for the following function,

yo (x*-1)° Jx+3

(x* +1)°
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Solution
Step (1) Take Logarithmic function to both sides

(x> = 1)° Jx+3

(x* + 1)?

Iny=n

Use the properties as we did in the above example to simplify the right term,
INy=3In(x* -1 +@/2) In (x+3) — 2In (x* + 1)
Step (2) Differentiate both sides w.r.t. x:

d d 2 3
ol y=&{3ln(x ~1)+(1/2) In (x +3) = 2In (¢ + 1)}

1dy _ 6x 1 ex
y dx x> -1 2(x+3)  x*+1°

Step (3) Solve for dy/dx:

dy 6X 1 6x°
-— =Y 2 + ] '
dx X -1 2(x +3) x> +1
Step (4) Replace y by f(x):

dy (WZ—DgJX+3J{ 6x 1 GXZ}

J— + p—
dx (x* + 1) x> =1 2(x+3) x*+1

Also the logarithmic differentiation may help us to differentiate the function of the form,

y = [f(0],

Steps for differentiating the functions in the form : y = [f ()]’
Step (1) Take Logarithm of both sides :
Iny = In[f” = g(x) N[f ()]
Step (2) Differentiate both sides w.r.t. x:
R T
Step (3) Solve for dy/dx:

dy f'(x) |
ol y{g(x) TR (X) In[f(x)]}-

+g'(x) In[f(x)] .

Step (4) Replace y by f(x):
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dy _ 90 X
v [f (%] {g(x) o 9 (x)ln[f(x)ﬂ>

Example (5) Find dy/dx for the following functions,

i y=x" (i) y= (sinx)**
Solution
@) y=x
Iny = Inx* = xIn x . Differentiate both sides w. r. t. x,
1 L ik then Y - y(@+ Inx)= x* L+ Inx)
y dx X dx
(ii) y= (sinx)**

Secx

Iny = In(sinx)*™** = secx In sinx . Differentiate both sides w. r. t. X,

1d COS X
o = secX —— + secx tanx In(sinx) , then

y dx sin x

&y _ y{ 1 secxtanx In(smx)}
dx sin x

. 1 .
= (sin x)“‘”{ —— + secx tanx In(sin x)}
sin x

Example (6) Find dy/dx for the following functions,

i) y=@+x)™ (i) y = (Inx)"™
Solution
(i) y=@+x™*

Iny = N +x)™* = tanx In (1 + x) . Differentiate both sides w. r. t. X,

lﬂ:tanx + sec’xIn(1+ x), then
y dx 1+x
@ _ y tanx sec? x In (1 + x)
dx 1+ X
= (1+x)ta”{ 1anx | cec? xInd+ x)}
1+ x
(i) y = (Inx)"

Iny = In (Inx)"™ = Inx (In In x) . Differentiate both sides w. r. t. x,
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L T E(1+In|nx)
y dx Inxx X X

Y _ y{x (1+In|nx)} = (L+x)™ {m}

dx X

2.2.3 Integration and Natural Logarithmic Function

From derivatives forms we can write the following integration forms,
1 1
_[— dx = In|x + c and I— du = Inju + c.
X u

or in the more convenient form as,

= In| f(x)|+ c.

Example (7) Evaluate the following integrals

dx ()j SINX_ gy (iii) jﬁ dx

— COs X

Solution

. 2 1 3x? 1
(i) jljx3 dx = §I1+XX3 dx=§In‘1+x3‘+c.

T osinx B
(ii) jmdx= In|2—cosx|]0 =In3|-In|1|=In[3] .

0

= jll—x dx = In(Inx) +c.

(iii) j—x Iln

Example (8) Evaluate the following integrals

Inx sin 2x 1
(I)I 4 )I1+S|n X (lll)jm o

Solution
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O AL E AP L
. sin 2x 2sin X cos x

0 [ anex %= T ainex
1 1 dx
O g * 2l (o

In(1+ sin®x) +c

J =2In(1+Vx) + ¢

The natural logarithmic function may also be used to find expressions for integration of some

trigonometric functions as in the following theorem.

Theorem (2.2.1)

0) Itanx dx = Injsecx +c.

(i) Icot x dx = In[sinx + c.

(iii) Isecx dx = Injsecx + tanx| + c.

(iv) Icscx dx = Injcscx — cotx + c.

Proof
|nx —sinx
1) |tanx dx = — dx = —
()I I osx Icosx
COS X
(ii) jcot X dx = _[— dx = In|sinx| +
sin x
secx + tanx
(iii) '[secx dx = '[secx; dx
secx + tanx

= Injsecx + tanx| + c.

CSCX — cotx
= jcscx— dx

(iv) _[ cscXx dx
cSCX — cot X

= Injescx — cotx| + c.

Example (9)
() j tan5x dx

(i) | —COt(': X gy

In|cos x| +¢ = In|secx| +c.

dx

Iseczx + sec xtanx
SeCX + tanx

dx

Icsczx — cscxcot X
cSCX — cot X

Evaluate the following integrals,

(i) Ixsec x% dx

(iv) Ixz cscx® dx
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Solution

. 1 1

(i) ItanSx dx = : ItanSx (5dx) = : In|sec5x| + c.

. 2 1 2 1 2 2

(i) _[xsecx dx:EJ‘secx (2xdx):zln‘secx +tan x ‘+c.

cot (In x?)
X

(iii) | dx:-%Jcotﬂnxz)cidx):-%In‘sh1dnx2)‘+c.

- 2 3 _1 3 2 _1 3 3
(iv) Ix CsCX dx_g_[cscx (3x dx)_gln‘cscx — cot x ‘+c.

Exercises (2.2)

() Find dy/dx for the following functions,
(1) y=Inx*+4) 2) y=In(x® +5) (3) y =In|2 - 3x]|
(4) y =In|x*-2x| (5) y=In|sinx| (6) y = InInsecx

(7) y=In|secx + tanx|  (8)y=In|cscx —cotx| (9) y = [In(X)J°

(10) y = [In|x+]”5 (11) y=In3/x* +1  (12) y= In§/x* +3

1-x

(13) y = 1 +1In (E) (14) y =Inx>+ In (is] (15) y=1In
In x X X

(16) y = In(1 +Inv/x)  (17) y = cos(Inx)) (18) y =tan(l + Inx)

In x
1+Inx

(19) y=InIn(cscx®). (20) y = (21) y =sec(x + Inx)

(1) Use logarithmic differentiation to find dy/dx for the following functions,

(1) y=0@x-2)°(x* -5)* 2 y=0x -1*(+3)*
B) y=(x*+1* {x* -1 (4) y = (x* —1)° cot®x
(5) y=3(@x-1)3x +1 ©) y =3/(x +3° (x* 1)
(7) 'y =(sin* x*)(tan* x*) (8) y = (sec® x*)(cos” x*)

© y- 4/x® + 2 (1 + secx) (10) y = 5\/()(2 ) Bl 2

(X +102(x% +1)°
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B (x=3) (x+2)
(ﬂ)y_Ju+nu+6)

(13) y=@+ x>
(15) y = (tanx)”
(17) y = (secx)™*
(19) y=(x* -9

(1) Evaluate the following integrals,

@) jl+3x

Inx

© [~

% Isec 2X

— tan 2x

1
© fm .

) I 1+ x\/—

sin X — oS X
(13) I— dx

sin X + cos X
sin X cos x

2 + €052 X

(w)j dx

(17) I (cot5x — csc3x) dx

(19) I secx(secx—1) dx

3/x% +1 (sin® x)

(x+1)° (x* = 1)?
(14) y = (3 +cscx)™

(12) y =

(16) y = @+Inx)"™
@8) y = (sin+Inx)*

Inx

(20) y = (tan x+secx)

@ ;%

@ [

X2 +2x -1

xlnx

1
8 dx
®) J.cosz X (2 +3tanx)

(10) I X dan

1
(12) .[ m}) dx

tan x
13
(13) J.cos X(secx + 5)

(16) I (tan3x + sec3x) dx

(18) I cscx (1 — cscx) dx
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2.3. Natural Exponential Function

The Natural Logarithmic function In x is one-to-one function with domain (0, «) and range

¥

(-0, ) . Then it has an y=x
inverse function of domain (—oo, o) and /7

y=expx /
range (0, o0). This inverse function is / ///
called the natural exponential function 0/

/ =]
and is denoted by exp (x) or simply e*. i m
Now, since lim Inx = —
x—0%"

and lim Inx = oo, then,

X—>00

lime* =0 and lim " = oo,

X—>—00 X—> ©

and since In(1) =0, then e° = 1. The function y = e* is sketched.
Since the functions Inx and e* are inverses to each other, then
In(e*) = ™ = x and y = e* if andonlyif x=Iny.
The number e may be computed from the relation Ine =1, to obtain,
e =2.71828 1828 45 90 45.
The number e is called the base and x is called the exponent of the natural logarithmic

function, i.e. Inx =log, x

Properties of natural exponential function.

For any real numbers xand vy,

(1) e* > 0. (2) e =e*¢. (3) e =¢e"/¢e’.

@) e =1/e". 5) () =ev

2.3.1 Derivative of Natural Exponential Function

The exponential function is differentiable because it is the inverse of a differentiable function

whose derivative is never zero.
Consider y =e* , then Iny = x.

Differentiate w.r.t. X,
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It is more convenient to write the last expression as

4 gt _ gr f'(x)
dx
Example (1) Find dy/dx for the following functions,
M y=xe (i) y = e*
(i) y =" (iv) y = (Inx?) "™
Solution
2
(i) Y _ xzieX + e 2 xZeX 4 2xe
dx dx dx
(ii) y _ ¥ ix2 = 2xe"
dx dx

i
(iii)%:emdi\/x—drl:em 1 __ ¢
X X

2 x+1 2. x +1

(iv) Yy ieSinx + e 9y
dx dx dx

2.3.2 Integration of Natural Exponential Function

From the derivative formula of natural exponential function, we obtain the integral formula

as,

Iexdx:ex+c. J'e”du:e“+c.
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Example (2) Evaluate the following integrals,

(i) j(e* +1) dx (ii) je?x dx

T . e

(iii) .([e cos x dx. (IV)IeX 1 dx
Solution

(i) j(eX+1)dx =" + X+ C

(ii) jeZX dx = %jeﬂ (2dx) =% e” + .

7l2

i i /2 i i

(III) J'esmx COSXdX:esmx]g — esmzz/Z _esmo :el _eO :e—l.
0

€ dx = In(e* +1) +c.
e’ +1

) |

Example (3) Evaluate the following integrals,

(i) Ix e ¥ /2 dx (ii) J‘sec2 2x e™"** dx
e - ccos(e™)

(i) J'm dx (iv) IeT dx

Solution

0) fx e /% dx= —I e /2 (—xdx) = —e *"?+c.
Another solution

Let u=—x2/2, du = — xdx
jx e X/2dx = j e' (—du) = —j e’ du

2
=—e'"+c =-e""?+c.

(") IseCZ 2% etanZXdX — %J.etaHZX (ZseCZ 2de) — %etaHZX +cC.

Another solution

Let u = tan2x, du = 2sec’ 2x dx

Isecz 2x e ¥dx = J‘e” (ldu) lu oo Toma
2 2 2
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eZ

(iii)j

Another solution

Let u = e?*, du =2 e* dx
J- e 1¢ du
X=—|—=
e +1 29u+1 2

X 1
dx ==
e +1 ZIe2X+1

dx =%In(ezx+1)+c.

EIn(u+1)+c=%|n(e2x+1)+c.

(iv) f%iix) dx = %fcos(ezx) (— 2e % dx) = _71 sin (e*zx) +cC.

Another solution

Let u=e?, du=-2e% dx

e2x

Exercises (2.3)

= sin(e )+ c.

IM dx =_71_[cosu du =_7lsinu +c

() Find dy/dx for the following functions,

(1) y=¢e"Inx

() y=(x*+1e*
(5) y=e*"

(7) 'y = In(cos e)
(9 y=etan x

(11) y=x%e’*

X —X

e —¢€

(13) y=

2
(15) y= ——
e

(17) y =-sec (e’xz)
(19) y= e Infx +1

(2) y — X3 esinx.

(4) y= e’
(6) y=(x"+2)°¢e”

(8) y= e +3.

(10) y = In (sin e*).

(12) y =In (tan(Inx)).

X —X

e +e

(14) y=

(16) y =

e" +e"
(18) y = Inx (sece®).

(20) y = (V) e .
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(1) Use implicit differentiation to find % :
X

1) e +Inx=10
(3) e’ cosx’y =1

(5) e*siny+e’sinx=y

(7) In(x +y)—e&*¥ =

(9) xe? +sin(Iny) = x

(11) In(csc e*)+e*Y =1

(111) Evaluate the following integrals.

1) jx e dx

©) j(ex +e7™) dx
(5) j(ex —e™)? dx

@) Iex @ + tane®) dx

1+ Vx)
9) je& dx
(11) J-e +1

eX
15 d
1) J.w/ex +1 "

sin (e

(19) |

(2 e +Inxy =10

(4) e¥ sinxy? =10

(6) ¥+ sinxy = x°
8) In(xy)+e* ¥ =1
(10) x*e’ +In(cosy)=1

(12) In(tan e*)+e¥ =y

3
2 sz e’ dx
etanx
cos? X

(6) j(ex +e7)? dx

) j dx

(8) je’x @+ sece™) dx

ea+mn

dx

(10) |
(12) Iex e* +1dx

(14) Isinx e™ ™ dx

a-x)
(16) |° .
(20) jcsc (e* )d
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2.4 General Exponential and Logarithmic Functions

2.4.1 The General Exponential Function

The general exponential function y = a* for positive number a = 1. The natural exponential

function y = e* is a special case when a = e = 2.7 1828 1828 45 90 45.
The general exponential function has the same properties as the natural exponential function.

Basic Properties

1. a*a’ =a*"’

3. (ab)* =a"b*

Derivative of general exponential function

y=a*, Iny = x Ina, differentiate both sides w.r.t. x,
iﬂ: Ina, then ﬂ: ylha=a"Ina
y dx dx
d X X
—a*=a"Ina or
dx

In more convenient form,

d

—a'™ =a'™ Ina f'(x)
dx

Example (1) Find dy/dx for the following functions,

(i) y=3" (i) y =2*
("l) y :Stanx (lV) y :4><2 3sinx
Solution

(i) dy _ 3*In3 (ii) ay _ 2° In2 (3x%)  (iii) ay _ 59 In5 (sec’ X)
dx dx dx
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(iv) % = 4" In4 (2x) 3™ + 4% 3™ In3cosx = 4 3" (2xIn4 + cosx In3)
X

Integration of general exponential function

From the derivatives formulas, we obtain the following integrations formulas

af®
or Ia”x)f‘(x)dx= +c
Ina

Example (2) Evaluate the following Integral,

(i) [3" dx (ii) jx 25 dx
(iii ) j cos3x 5" dx (iv) j 'X dx
Solution

(i) 3" dx = e

X2

. 2 1 2 12
2% dx==|2% (2xdx) ==
(||)Ix X 2_[ (2xdx) > 2

+C.

Another solution

Let u=x%  du=2xdx, ie. %du=xdx

2u 1 2¢
+C == +C
In2 21In2

& 1. 1
'[x2 dx :EIZ du=§

sin3x

; 1 - 1
iii) [cos3x 5™* dx = =| 5"* (3cos3xdx) == +
( )I 3'[ ( ) 3 In5
Another solution

Let u =sin3x, du = 3cos3xdx, i.e. % du = cos3xdx
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jcosSx 5SIn3X dx = %I 5'du = =

7™ e 1 7
(IV)I < dx=f7 (;dx) = 7 +C

Another solution

Let u=Inx, du = (lj dx
X
Inx u Inx
I7 dx=j7“"xdu = +c=7 +C
X In7 In7

2.4.2 The General Logarithmic Function

The general exponential function f(x)=a* for positive number a =1, is one-to-one
(injective) function. Its inverse function is denoted by log, x and is called the logarithmic
function of x with base a. This means that,
y=Ilog,x ifandonlyif x=a’.
The natural logarithmic function Inx is a special case of the logarithmic function when the
base is e, that is,
Inx =log, X.

The general logarithmic function has the same properties as the natural logarithmic function.

Relation between natural and general logarithmic functions. Consider y =log, x , then
x=a’.
Taking the natural logarithm of both sides, we obtain

Inx=1Ina’ =yIna=Inalog, x, and hence
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Derivative of general logarithmic function

Using the above relation between the general logarithmic and the natural logarithmic

functions we obtain the derivative formulas as,

Example (3) Find dy/dx for the following functions,

(i) y =log, x (ii) y = log,|x* - 4
(iii) y = logg[secx| (iv) y = log, 3/(2x+5)?
Solution
dy 1 d 11
i) —=——(nx)=—=
® dx In3 dx( ) In3 x
(ii) dy _ iim‘X? _4‘: 12X
dx In2 dx In2 x* — 4
... dy 1 d 1 secxtanx  tanx
(i) === —— —In|secx| = =
dx In5 dx In5  secx In5
(iv) ﬂ:ii(g|n|gx+5|j =i 2_2
dx In7 dx\3 In7 32x+5

Exercises 2.4

(D) In the following problems, find ay for the given functions,

dx
(1) y=3" (2) y=5"" @) y=7""
(4) y =20 (5) y=3sin(2*) +sine* (6) y=2""+In2*
(7) y=2% +In3*  (8) y=7""45x (9) y=tan(3* +€¥)
(10)y = cot (2" +€%) (11) y =10" (12) y =sec(e™) +x
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(13) y = log, (x* + 4)

(16) y =

log, |e®

A7) y=

(14) y=log, (x* +1)

(15) y = log,| 2" - 3x|

log, |sinx + x| (18) y = (log, X)*

(19) y =log,|secx + x*| (20) y=1log,ix* -1 (21) y = (log, x)*

(22) y=log,|cosx + x*| (23) y=Ilog,%/x* +1 (24) y=5"* - 3™

(25)y=——+
log., x

3

1
28) y=
()yIO 5

2

1
+Iog5? (29) y

— 3Iog2 sinx

(1) Evaluate the following integrals.

(1) j x 3 dx

@) ISX sec5” dx

(10) j \/ﬁ dx

7X+1

13) [—

(16) J'3X + 6X

2) Ixz 5¢ dx

6 @ -a™) dx

(8) I3X tan3* dx

10(1 + \/;)

dx
Ix

(1) |

(14) jz* 2¥ +1dx

tan (4‘2X)

(17) j dx
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09, (26)y=log,x'—3  (@7) y=log, >

2I093 tan x

(30) y=

® [ (3 +27) dx

©) [l +a*f dx

9 X d
) J‘1/2x+9 "

5(1 +Inx)

(12) j dx

sec(2 3X) +1

(18) j dx



Chapter (3)

Inverse Trigonometric, Hyperbolic and Inverse Hyperbolic

Functions

3.1 Inverse Trigonometric Functions

Since the trigonometric functions are not one-to-one in their natural domains, they do not
have inverse functions in general. By restricting their domains, however, we obtain one-to-
one functions that have the same value as the trigonometric functions and that do have

inverses over these restricted domains. For example, the function y = sinx is not one-to-one

on its natural domain R. However, when the domain is restricted to the interval [% , Z]

2

it becomes one-to-one (see Fig (3.1)).

X

AW [NTA
\VARY, AV

Fig. (3.1)
3.1.1 The Inverse Sine Function

Definition

The inverse sine function denoted by sin™x or arcsin X, is defined by,

y=sin"'x or y=arcsinx ifandonlyif x=siny

for -1<x<1l,and —7z/2<y<7x/2

We can sketch the graph of y =sin™'x as in Fig (3.2) by reflecting the curve y =sinx,

X e{%%} through the line y =x. We could also use the equation x =siny with
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— 712 <y<7x/2 tofind the points on the graphy =sin™ x. The angles y =sin™" x come

from the first and fourth quadrants because —z/2 <y < z/2 [see Fig (3.3)].

y = arcsin x // wi2
y=sinx (A
7
// 7‘
‘ —-®f2
Fig. (3.2) Fig. (3.3)

From the properties of inverse functions, we have :
(1) sin(sin* x) =sin(arcsinx) = x, if —1<x<1.

(2) sin™ (sinx) = arcsin(sinx) = x, if —z/2<x<7x/2.

Example (1)

Evaluate the following expressions

L1 (-1 (3
i) sint| — ii) sin!| —= iii) sin™!| —
oull)  ww(3]  ww(?
Solution

] ] . 1 T T
i) Let =sin™* , then siny=— and -=<y<Z.
() y ( J y N , <Y<

Sl

T
Hence =—.
y 4

. - T VA
i) Let =sin"|— |, then siny=— and ——<y<—.
(ii) y (J—] V=7 S <Y<
- 7T
Hence =—.
y 4
(iii) Let y= sml(g) then smy_\/z§ and — % ys%. Hence y=—.
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Example (2)

Find the exact value of the following expressions whenever it is defined.

ol (3] (] (]

Solution

(i) Since —1< =<1, then sin sinl(l] _ 1
2 2)|7 2

. then sin{sin[fﬂz z
4 4

(iii) Since 2z [_Z, E]then Siﬂ:l(Sinz—ﬂ) £ 2Z
3 2 2 3 3

But, sin™ {sin (%H =sin™ [@] = % :

3.1.2 The Inverse Cosine Function

(if) Since —— < =<

Ny
NG
NN

Definition

The inverse cosine function denoted by cos™ x or arccos X, is defined by,

y=cos " x or y=arccosx ifandonlyif x=cosy

for -1<x<l,and 0<y<r.

The graph of the function y = cos™ x is illustrated in Fig. (3.4). The graph may obtained in
similar ways by reflecting

the curvey =cosx, xe[0, z] through the line y=x or by using the equation
X = cos ywith 0 <y < 7. The angles y = cos™* x come from the first and second quadrants

because 0 <y < [see Fig (3.5)].

¥

'lx

Z y = arccos X //

Fig. (3.4) Fig. (3.5)
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From the properties of inverse functions, we have the properties,
(1) cos(cos™ x) = cos(arccos x) = x, if —1<x<1.

(2) cos™ (cosx) = arccos (cosx) = x, if 0<x<u7.

Example (3)

Evaluate the following expressions

. 1 ) -1 J3
i) cost| = i) cos™| — iii) cos™| —
(i) (2) (i) ( 5 j (iii) [ 5 J
Solution

(i) Let y=cos‘1[%j, then cosy:% and 0<y<r.
ya
Hence =—.
Y 3

(i) Let y =cos™ (_?1} then  cos y=7 and 0<y<r.

2r
Hence y=—.
y 3
(iii) Let y =cos™ (%J then  cos y:@ and 0<y<ur. Hence vy = %
Example (4)

Find the exact value of the following expressions whenever it is defined.

oo (3] o o

Solution

(i) Since —-1< _71 <1, then co{cos‘l (_?1)} = __1

. then cos™ cos(ij —
4 4

(it) Since —

Ny

— T
<—<
4

NN
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3.1.3 The Inverse Tangent Function

Definition

The inverse tangent function denoted by tan™"x or arctan X, is defined by,

y=tan'x or y=arctanx ifandonlyif x=tany

for xeR,and —z/2<y<rxl2

The graph of the function y = tan™" x is illustrated in Fig. (3.6). The angles y = tan™ x come

from the first and fourth quadrants because —z/2 <y < /2 [see Fig (3.7)].
: I

y= tan x 5 =2
-
//
-2 y=tan" x / ik
4 i R
fan " x
”
~
-
-®i2
Fig. (3.6) Fig. (3.7)

It has the following properties,
(1) tan(tan™" x) = tan(arctan x) = x, if x € R.

(2) tan™ (tanx) = arctan (tanx) = x, if —z/2<x<7x/2.

Example (5)

Evaluate the following expressions
(i) tan™(-1) (ii) tan* (v3)

Solution
(i) Let y=tan™*(-1), then tany = -1 and —%s ys%.
—-7T
Hence =—.
y 4
(i) Let y=tan™ (\/5) then tany =3 and —% <y< %

Hence y = %
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3.1.4 The Inverse Secant Function

Definition

The inverse secant function denoted by sec™ x or arcsec x, is defined by ,

y=secx or y=arcsecx ifandonlyif x=secy

for |x >1, and 0,z Z, )
X ye[ ZMZ EJ

The graph of the function y = sec™ xis illustrated in Fig. (3.8). The angles y = sec™ x come

from the first and third quadrants because y e {O%J U {% ﬁj [see Fig (3.9)].

{2

sec"x

X
y=seex
p
2 1 72
| ’z K 0
y=secx

Fig. (3.8). Fig. (3.9).

Remark

The domain of the inverses are chosen to satisfy the following relationships

sect x:cos‘l(lj , csct x:sin‘l(l) cot™ x:tanl(lj
X X X

We can use these relationships to find values of sec™ x, csc™ x, cot™* x on calculators that

give only sin™" x, cos™ x and tan™' x.
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Example (6)
Find the exact value of the following expressions whenever it is defined.

(i) tan [tan* (100)| (ii) tan [tan ()] (iii) cos™ {cos (?ﬂ

Solution

(i) Since 100 € %, then tan [tan"* (100)| = 100

(i) Since z e{%, %} , then tan™[tan(z)]=tan™(0) = 0
iy -7 4 -\ _ 4 (1) i
(i) Since —= ¢ [0, 7], then cos |:COS(TI| = cos (\/E]_ a

Example (7)
Find the exact values of

Aol () ol (3]

If we let y =tan‘l(§j then tany :(2/3). We may regard y as the radian measure of an

angle of a right triangle such thattany:(2/3), as illustrated in Fig.(3.10). By the

Pythagorean theorem, the hypotenuse is +/3° + 2° =4/13. Referring to the triangle, we

obtain,
i 2\] i3 2
sec/tant = || = —=
L 3)] 3
I 2\ ] 2
sinftan?| = || = —
i 3)] 13
cot| tan™ % = g Fig.(3.10)
Example (8)

Find : cot [sec‘l(— %} +csct (—2)}
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Solution
We work from inside out, using reference triangles to exhibit ratios and angles.

Negative values of the secant come from second-quadrant angles;

secl(— i] = secl(ij _o7 %
J3 -J3) 6 1 5m6
L6\
— .3 o

Negative values of the cosecant come from fourth-quadrant angles;

csc(-2) = cscl(i) =z il 3
1 6 —®i6

Then

42 1) | —cot | 2F T
cot {sec (— E) + Csc (—2)} = cot { 5 6}

Exercises (3.1)

(1) Find the exact value of the following expression whenever it is defined.

(3 L V2 (1
1a) sin 7] b) cos [7] c) tan (Ej
] 1 -1 _1 -1
2a) sin Ej b) cos (?j c) tan*(-1)

4 al 7 a1
3a) sin 5) b) cos (Ej C) sec (EJ
. [ 27 af a1
4a) sin ?) b) cos (5) C) sec gj
5 a) sin {sin‘l(— EH b) cos {cos‘l(zﬂ
10 3
¢) tan|tan*(14)| d) seclsec(2)]
6 a) sin {sinl(gﬂ b) cos {cosl(_—sﬂ
5 4
¢) tantan*(12)] d) secfsec(5)]
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7 a)sin‘l{sin Zﬂ b) cos™ {005(5—7[]}
3 6
c) tanl{tan —EH d) sec™ {sec(ﬁﬂ.
6 6
[sin %j_ b) cos™ {cos[z—ﬂ
c) tan‘{tan %j_ d) sec™ {sec(

9a) sin|cos" lﬂ b) tan* {sec Zﬂ
2 4

(
c) tan [sinl{%ﬂ d) sin [tan* (~1)]

8a)sin™

(I) Rewrite as an algebraic expression in x for x>0 ;

(1) sin(tan™ x) (2) tan(sin”"x)
(3) tan(cos™x) (4) cos(tan™" x)
X . L X

(5) sec (sm Ej (6) sin (cos Ej
(7) cot(sin1 1} (8) tan (secllj
X X

(1) Find the solutions of the equation that are in the given interval.

(1) 2tan’t + 9tant + 3=0; (izj
2 2
(2) 15cos*t —14cos’t + 3 =0; [0, z]
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3.2 Derivatives and Integrals

We consider next the derivatives and integrals of the inverse trigonometric functions and
integrals that result in inverse trigonometric functions. We concentrate on the inverse sine,
cosine, tangent, and secant functions.

Theorem (3.3.1)

If u= f(x) is differentiable with x restricted to values for which the indicated function is

defined,

1 du d -1 du

d
—sm fu= \/7dx , —cos fu= \/7dx

d 1 du d du
—tanu=—"—+ — — Sec U—

dx 1+u? dx dx |u|/ 1 dx

Proof We shall consider only the special case u = x, since the formulas for u = f(x) may

then be obtained by applying the chain rule.

Let y=sin""x, then siny = x. Differentiate both sides w.r.t. x, cosy % =1,and
X

d dy 1 1 1
hence, —sin"'x=->= = =

dx dx  cosy Jl-siny  J1-x?
The formula fordi cos ' x can be obtained in a similar way.

X
Let y=tan"'x, then tany = x. Differentiate both sides w.r.t. x, sec®y % =1, and
X

hence, a tan™' x _ Wy 12 = : 7 = . 2

dx ©dx sec’y 1+ tan’y 1+

Similarly we can find the derivative of di sec™' x
X

Example (1) Find dy/dx for the following functions,

(i) y= sintx® (i) y=tan™"/x +1
Solution
2
(i) ﬂ :;iﬁ: L
dx 1- (x%)? dx 1-x°
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Sy 1 d
W e et ac

1 1 1
L+ (x+D) 2 x+1 2 x+1(x+2)

Example (2) Find dy/dx for the following functions,

(i) y=sec™5x (i) y= sin"te* (iii) y=tan™(Inx)
Solution
. dy 1 d 1
= = —(BX) = —F——
dx  |5x|\/(5x)* —1 dx Xy25%° —1
2Xx
iy Y oL o 28
dX 1_ (eZX)Z dX ’1_ e4X
... dy 1 d 1
i) 2 =———— (INX) =——.
(i) dx 1+ (Inx)? dx( ) X[1+ (Inx)?]

We may use theorem (3.3.1) for differentiation to obtain the following integration formulas

Theorem (3.3.2)

. 1 .
(i) du =sinu + ¢ ul <1
I 1-u® .

(i) _[1 +1u2 du = tan™u + c; for all u

du = sec?u + c; uf > 1

1
W J e
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These formulas can be generalized for a > 0 as follows,

Example (3) Evaluate the following integrals,

V312

. dx

0 [ —— (if) j
3 1— %2 1+ x2
2 dx

(v) [-2 %

1+e

(i) Z,J'@—x —XZ —

Solution
B2 gy V312 T T T
M [ = sin? X[’ = sin(V3/2) —sint@/2) =Z-Z_Z
ALl — X2 3 4 12
~ = tan™ x]t —tan'(@) - tan' (@) =2-0="2.
4 4
N
(iii) I o sec™t x]f@ —sect(V2) —sec?(2/43) = E T -
2B XX =1 4 6 12
e” dx (2e™ dx) 1. 1,
i = tan™ (e**) + c.
()-[1+e .[1+(er) 2 %)
Example (4) Evaluate the following integrals,
X dx
() (ii)
J.J 9 - x* J.x,/x -
dx e dx
i) | ————— iv
( )Ix(4+[lnx]2) ( )-[ Ty
Solution
. X dx (2xdx) 1 . (%
()| —— = = =sin (— + C
I1/9 x* J.J — (x?) 2 3
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3
—(3X dg _1 sec™t (X?J +C.

Rl Py i oy et

iy [ ok 1 tan‘l(ln—ijrc.
X(4+ [Inx]*) (4+[Inx]?) 2 2

“tan'(e*)+ c.

e dx e* dx (Be™dx) 1
(I)I “+ e I1+e I1+(e3x) 3

Example (5) Evaluate the following integrals,

Q) J‘ sin™ x ()Icos(sm X) dx

() [

(L+ x*)tan™" x

Solution

sl N2
}dx :—(sz X) +C

sin™ x . 1
()I\/de=jsm x(ﬂ

(i) ICO\S/%X) dx = Icos (sin™' x) (%}

=sin(sin®x)+¢c = X+¢C

X 1 3x? 11 x?

i) | ——dx = | ———— dx == —tan'| —= | +C.

( )_[5 x® 3j(\/§)2+X6 3\/5 (\/gj

: 1 d(tan™ x) .

v =|———= = Injtan” x| +cC.

W) I(1+ x*)tan™ x -[ tan~ x ‘ ‘
Exercises (3.2)
() Find dy/dx for the following functions,
1) y=sin"Vx. 2 y=x*sin"x. (3) y=tan*(3x - 5)
(4) y=tan™ (e*). (5) y=e*secte™ (6) y= sec"x’

(7) y=x*tan™" x*, (8)y = tan*(In x). (9) y=sect{x* -1
(10) y =cos™* e* . (11) y=— 11 (12) y= 4/sinx

SIin— X
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(13) y= (L+cos™3x)® (14) y = secV/x (15) y =In(tan™*x?)

(16) y=tan*¥/x> (17) y=3"* (18) y=In(sin*e?)
tan X sin™ x
(19) y . o)y= :
1-x

(21) y=cos(x ™)+ (cosx) " +cos ' x.

(1) Evaluate the following integrals,

1 co1
(1)~[x2+16 dx @) J‘4 + 3x? (3)£x2+16 dx
S dx X
@ e 6) [ = ©) Ixﬁ

NEYY -1 .
tan— X
X ox VX g ) [N gy
X

cos® X +1

10) [EIN2X)° 1) == 1) [
()Iﬂx ()I&(ux) ”Ixm
sec’ (sec™ x)OI

Sl By e

3.3 Hyperbolic Functions

Many of the advanced applications of calculus involve the exponential expressions

e’ +e and e
2 2

Which define the hyperbolic functions. These hyperbolic functions are used to solve a variety

of problems in the physical sciences and engineering.

3.3.1 Basic Definitions

There are six hyperbolic functions similar to the trigonometric functions called hyperbolic

sine, hyperbolic cosine, hyperbolic tangent, hyperbolic cotangent, hyperbolic secant, and

67



hyperbolic cosecant and denoted by sinhx, coshx, tanhx, cothx, sechx, and cschx

respectively, [see Fig.(3.11)], and are defined as follows

Definitions

e
coshx =

_coshx e +e™

- = x#0
sinhx e"—e

2
—-€

1
cschx = — =
sinhx e

X =X

cschx

y =sechx y =cschx
Fig.(3.11)
The hyperbolic functions has a number of identities similar to the trigonometric functions

listed in the following theorem.
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Theorem (3.3.1)

(i) cosh? x — sinh®*x =1 (i) 1 — tanh® x = sech’® x
(iii) coth®x — 1 = csch®x (iv) sinh 2x = 2sinh x cosh x
(v) cosh 2x =cosh®x + sinh®x (vi) cosh? x = %M
(vii) sinh2 x = Sosh2x = 1
2
Example (1)
Approximate the following to four decimal places
(i) sinh(4) (ii) sech(2)
Solution
4 L4 _
(i) sinh(4) = e e :54.59815 0.0183156: 97 9899
2 2
(ii) sech(2) = — 2 — = 0.2658
e’ +e

3.3.2 Derivatives and Integrals

Theorem (3.3.2)
If u= f(x) isdifferentiable , then

() 9 sinhu = coshu (ii) 9 cosh u =sinhu
dx dx dx dx

(iii) itanh u = sech®u du (iv) icoth u=—csch®u au
dx dx dx dx

(v) isech u =—sechu tanhu au (vi)icsch u=—cschucothu0|—u
dx dx d

dx X

Proof As usual we consider only the case u = x.

M) Lsinhx = L[ | &€ *+€7" _ oshx
dx dx 2 2

e* +eXJ gt —e™

= = sinh x
2

(i) a coshx = da
dx dx 2

69



... d d sinhx  coshx cosh x — sinh xsinh x
(iii) — tanhx = — = 5
dx dx cosh x cosh” x

1
= ——— =sech’x.
cosh® x

.. d d coshx  sinh x sinh x — cosh xcosh x
(iv) i cothx = — =
X

dx sinhx sinh? x
= __12 = —csch?x.
sinh“ x
d d 1 — sinh x 1 sinhx
(v) — sechx = — = o ==
dx dx cosh x cosh” x cosh x cosh x
= —sechxtanhx .
L d d 1 — cosh x 1 coshx
(vi) — cschx = — — =—— =— -
dx dx sinh x sinh” X sinh x sinh x
= —cschxcoth x.

Example (2) Find dy/dx for the following functions,

(i) y = sinhx® (i) y= sechx?
(iii) y = cosh(x*-1) (v) y = tanh(e”)
Solution

(i) % = cosh x° di x® = 3x?cosh x®.
X X

(ii) Y _ —sech x? tanh x? d x> =—2xsech x? tanh x*
dx dx

(iii) a _ sinh (x* —1)i (x* =) =2xsinh (x* —1)
dx dx

(iv) @ _ sech?e* d e* = e* sech?e”.
dx dx

Example (3) Find dy/dx for the following functions,

(i) y = tanhy1+ x* (i) y = cosh(e*)
(iii) y = coth(Inx) (iv) y = csch (x%)
Solution

sech® /1 + x* .

H dy 2 2 d 2
i) — =sech® {1+ x° —,1+Xx° =
WM J el

X
1+ X2
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(ii) Y _ sinh (e*) ie3X =3 e* sinh (e¥).
dx dx

(iii) y_ —csch? (In x)i (In x):—lcsch2 (Inx)
dx dx X

(iv) % = —csch x° coth x?’di x®=—3x?csch x* cothx®
X X

We may use theorem (3.3.2) for differentiation to obtain the following integration formulas

Theorem (3.3.3)

(i) jsinhu du = coshu + c. (i) J.coshu du =sinhu + c.

(iii) Isechz udu = tanhu + c. (iv) Icschzu du =—coth u + c.

(v) Isechu tanhu du = —sechu +c. (vi)_[cschu cothu du =—coth u+c.

Example (4). Evaluate the following integrals,

(i) jx sech? x? dx (ii) jtanhsx dx
(iii) js,inh2 X dx (iv) j4eXsinhx dx
Solution

: 2,2 _1 2.2 _ 1 2
M) _[xsech X“ dx _Ejsech X“ (2xdx) = Etanhx + C.

(i) [tanhax dx = [ 2% g Lp3simndx g,
cosh 3x 37 cosh3x

= % In(cosh3x) + c.

(iii) Isinhz X dx = I—COSh ix -1 dx = % [SII’];ZX_){' + C.

(lV) J.4ex sinh X dx = J.4ex e¥ —_ ¥

dx = I(Ze2X —2)dx =e* —2x +c.
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Exercises (3.3)

(1) Approximate the following to four decimal places:
(1) cosh(In4) (2) sinh(3) (3) tanh(-3) (4) sech(2.3) (5) coth(10)
(6) tanh(-2) (7) csch(=1) (8) cosh(2.1) (9) coth(6) (10) sech(3.2)

(1 Find % for the following functions,
X

(1) y =sinh(5x) (2) y =sinh(3x —1) (3) y =+/x tanh/x
(4) y=x®tanhx® (5) y= cosh(%) (6) y=sech®x*
(7) y =Insinh(2x) (8) y= cosh(Inx) (9) y = coth (Inx)

(10) y =In(cothx)  (11) y =tan™*(cschx) (12) y =sin"*(sechx)

(111) Evaluate the following integrals.

smh\/—

(1) j x2 cosh x° dx ) j sech?(2x -1 dx (3) j

(4) j x% cosh x* dx (5) I dx (6) I

cosh 3X smh 2x
@) Itanh 3x sech3x dx (8)J'coth 2x csch2x dx (9) J.cosh X csch? x dx

1 )J- cosh 2x

dx 11) | cothx dx 12) | e** coshe® dx
1 + sinh 2x ( )I ( )I

3.4 Inverse Hyperbolic Functions

It is clear from the graphs of the hyperbolic functions that sinh x, tanhx, cothx and cschx
are one-to-one for all values of x, while the graphs of cosh x,and sechx are one-to-one for
x>0 only, so they are invertible. The graph of the inverse hyperbolic functions were

obtained by reflecting the graphs of the hyperbolic functions about the line y = x.

3.4.1 Basic Definitions

Since the hyperbolic functions are expressible in terms of e*, then the inverse hyperbolic

functions are expressible in terms of In x as in the following theorem.
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Theorem (3.4.1)

sinh™ x = In (x + /X% + 1) cosh™x = In (X + X — 1)

1+41 - 2
tanh ™t x = % In(lJr X] sech™x = In(Jr—X]

1-X X

Proof

Yy _ 7Y
(i) Let y=sinh™x, then x=sinhy = %, which can be rewritten as,

e’ — 2x —e”Y =0. Multiplying both sides by e”,

e?’ — 2xe’ —1=0. Solve by quadratic formula,

ey

:2Xi ":X2+4: X+ x2+1.

Since e’ > 0, refuse the minus sign.

Thus e’ = x + 4/ x* +1. Taking the natural logarithms yields,

y = In(x+,/x2 +1), or sinh™x = In(x+ X2 +1) :

Similarly, we can prove the formula for cosh™ x and sech™x.

y -y

el —e : .
(iii) Let y=tanh™x, then x=tanhy = —~ which can be rewritten as,
el +e

(x =1 e’ =—(x+1) e”. Multiplying both sides by e”,

e? = GJF—XJ . Solve by quadratic formula, and take the natural logarithms, we obtain,
- X

yzlln 1+X, or tanh‘lx:lln L+ X .
2 1-x 2 1-x
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3.4.2 Derivatives and Integrals

The derivative of the inverse hyperbolic functions may be obtained from direct differentiating
the logarithmic expressions above or similar to that done in inverse trigonometric functions.
d . d 1 X
—smh’1x=—ln(x+w/x2+1): 1+
dx dx X+ ¢x* +1 xZ+1
X 4+ 4/X* +1 1

- (x+\/x2 +1) (\/x2 +1) N

In another way, let y =sinh™x ,then sinhy = x.

Differentiate both sides w.r.t. x, coshy % =1,
X

isinh’lx:ﬂ _ 1

1 1
dx dx coshy sinh?x + 1 Sl

In the same way and if u = f(x) is differentiable , then

by using chain rule we can show the following relations,

Theorem (3.4.2)

, d cosh™u = ! du

isinh’lu: ! du — — u>1
d dx u? — 1 dx

X u? +1 dx

1 du -1 du

itanh’lu: — |ul<1, disechlu:——,0<u<l
X

dx 1-u® dx U +/J1— y? dx

Example (1) Find dy/dx for the following functions,

(i) y= sinh™*x® (i) y= sech™x’
(ii) y = cosh™ (ezx) (iv) y = tanh™(Inx)
Solution
2
Q) ﬂ _ 1 ixe’ _ 3X
dx x® +1 dx x® +1
(ii) ﬂ:_—li X2 = -2
dx x? J1-x* dx X 41— x*
2X
ig o1 4 20
dX e4X _ 1 dX e4X _ 1
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1 d 1

()dy S Inx =
dx  1- (Inx)? dx x|1—(|nx)2|'

We may use theorem (3.4.2) for differentiation to obtain the following integration formulas

Theorem (3.4.3)

. du . .. du
| =sinh*u + ¢ i =cosh?u + ¢
()'[1/1+u2 ()leuz—l
- =tanh™u + ¢ (IV)I \/7 =—sech™u + ¢
Uyl-—u

These formulas can be generalized for a > 0 as follows,

i [~
J1 + 9x2

25 — e
dx . dx
) I,/4x2 -9 ) '[x 16 — x*

Solution
1j 3 dx B 1

(i) ji o= _ Zsinhi3x) + ¢
J1+9x* 371+ (3x)?

e?* dx 1 ¢ 2e*dx 1
ii == = |— [tanh?e® + c.
()st — ¥ 2I25 — e™ (10)
(|ii)j d = 1 J.—de :lcosh (ij+c
4x* -9 27 j4x* -9 2 3
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(iv)j—dx =1I—2X o =[_—1j sech™ X +C
x 16 - x*  27x2fi6— x* \8 4)

Example (3) Evaluate the following integrals,

) xdx . dx
0 | o (ii) I—\/x_(l— "

(i) | o (i) | dx
X 4—X® X A1+ (Inx)?

Solution

2
1 J-Zx—dx =%cosh‘{%) +C.

(i)f xdx B
,/x“—25_2 x* — 25

1
zf] x

VR

. dx 3 4

(i) Imz 2 Il—(ﬁ)z = 2 tanh (\/;)-f- C.

d 1, 4x°d 1
(|||)J‘ﬁ: ZJ‘ﬁ:—sech X" +cC.

=sinh ™ (Inx) + c.

(e

1+ (Inx)?

(iV)I dx _
X A1+ (Inx)?

Exercises (3.4)

() Find g—y for the following functions,
X

(1) y=sinh*Bx) (2) y=sinh*E*) (3) y=cosh™*/x (4) y=cosh™(Inx)

5) y= tanhfl(—4X) 6) y= tanhfl(x“) (7) y=-sec ht x? @) y= etanh*lx3
©) y= XSinh‘li- (10) y =sech™+/x  (11) y =In(cosh™4x) (12) y = In(sinh ™ x)

(13) y=tanh*(x +1). (14) y=e*sech™*+/x (15) y = cosh*(sinh*x)
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(11) Evaluate the following integrals,

1
1) | ———d
@ J.,/81+16x2 §

¢ dx

@) J~ X dx :
1+9x
(5)'[ ezxex— 16 *
(S)I :ixx“
(11)‘[ 9+14x2 dX
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Chapter (4)

Techniques of Integration

4.1 Basic Integration Formulas

Now, we can summarize the basic rules derived in chapters (1) and (2), to be the base for
different techniques of integration. The following table shows these formulas, where
u=f(x)

n+1

u
(@ fu"du={n+l
Injul +¢; if n=-1

+cC; if n=-1

(2) IOL—U = Inju| +c. (3) Ie“ du =e” +c.

u)
(4)Ia“ du =2 +c (5) log, u _Inn
In a Ina

(6) _[sinu du=-cosu +c. @) Icosu du=sin u +c.
(8)_|'sec2 u du =tanu +c. (9)J.csc2 u du = —cot u +c.
(10)jsecu tanu du = secu+cC. Q1) Icscu cotu du =—-cscu +cC.

12) | tanu du = —In|cos C
( )I o |cosu] + (13)_[cotu du = In|sinu| +c.
= In|secu| + C

(14)Isecu du= In|secu+tanu| +c. (15)_[cscu du=In|cscu—cotu|+c.
(16)Isinhu du = cosh u+c @n Icoshu du = sinh u+c.

(18) Isech2 udu = tanhu +c¢ (19) J'csch2 udu =—cothu + c.

(20) Isechu tanhu du =—sechu +c (Zl)fcschu cothu du=- cschu+c.
(22)Itanhu du = In|coshu| +c¢ (23)jcothu du = In|sinhu| +c.

24) | cschu du=In|cschu—cothu|+c (25) | sechu du =tan™e" +c.
24| | [+c (25) |

du 1 u
27) | —— =—=tan* + C.
( )Jaz +u® a j
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4.2. Integration by Parts

The familiar differential formula for the product,

In its differential form, the rule become,

d(uv) =udv + v du.

Integration of both sides gives,

This form is called integration by parts, which is a technique for simplifying integrals of the

form,

_[f(x) g(x) dx

which not treated by the above basic integral forms.

Now with a proper choice of u and v the integral on the left hand side is obtained in terms

of the integral on the right hand side, whenever that on the right is easier to be evaluated than

the original one. The integration by parts formula may be used more than once in the same

problem.
The form of the integral has many cases.
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Case (1) : One of the two functions is polynomial

In this case, choose the polynomial to be differentiated, i.e. u = x", and dv is Integra bile,

and note that we will use the integration by parts formula n-times.

Example (1) Evaluate, _[x e” dx.

Solution
Let u=Xx, dv=e*dx, ,
then du =dx, v=e*.

Ixex dx = xeX—J'eX dx = xe* — e* + c.

Example (2) Evaluate, _[x cos x dx.

Solution
Let u=X, dv = cosx dx,
then du = dx, vV =SsinX.

Ix cosxX dx = xsinx — Isinx dx = Xsinx + cos X + C.

713
Example (3) Evaluate, '[xseczxdx.
0

Solution
Let u=x, dv=sec’x dx. then, du=dx, v=tanx.

7l3 7l3

/3
[ xsec? x dx = x tanx[§"* - [tanx dx = xtanx +Injcos x|]
0 0

T T
=— tan(—} +1In
3 3

Example (4) Evaluate, _[x Inx dx.

cos (%)‘ —~Incos (0)| = %\/5 + In(%} =112

Solution In this example, if we choose u = x and dv =Inx dx, then dv is not integrable, so
we choose

u=Inx, dv=xdx,then du=1dx, V=X7.
X
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2 2 2 2
_[xlnxdx = X—Inx—.[x—.ldx = X—Inx— x + C.
2 2 X 2 4
Example (5) Evaluate, _[xz e? dx.
Solution

Let u=x*> dv=e*dx. Then du=2xdx, v=2e?*.

_[xz e dx = 2x%e* —4.[xe2X dx .

We use integration by parts again, let u=x and dv = e* dx,

2x

du = dx, v=2e”. and

.[xz e” dx = 2x*e* —4[2xe* —2.[ e?* dx].

= 2x%e® —8xe® + 4e* +c.

Example (6) Evaluate, Ix3 cos x* dx.

Solution

Ixs cos x* dx = sz (x cos x*) dx

Let u=x%, dv=xcosx® dx, then du=2xdx, v=%sinx2.
3 2 1 2 H 2 H 2

Ix COS X dx:Ex sin X —Ixsmx dx

_ 1, .. - 1 2
= —X"SInX™ + —COSX" + C.
2 2

Case (2): The integral not contains polynomial

Choose the easier function for integration to be integrated,

Example (7) Evaluate, I e cosx dx.

Solution

Let u=e* dv=cosx dx, then du=¢e" dx, vV =SinX.

I e* cosx dx = e*sinx — je* sinx dx.
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Again, use integration by  parts, let u=e", dv =sinx dx, then
du=e* dx, v=-cosx and,
I e* cosx dx = e*sinx — [—e*cosx + _[ex cos x dx].

The unknown integral now appears in both sides of the equation. Combining the two
expressions gives,

2! e* cosx dx = e*sinx + e*cosx + c.

Thus,

1 .
I e’ cosx dx = E(exsmx + e*cosx + c)

Example (8) Evaluate, I sec® x dx.

Solution

I sec®x dx = _[secx sec® x dx

Let u=secx, dv=sec’x dx, then du =secx tanx dx, v = tanx.

J.sec3 xdx = Isecx sec? x dx= sec xtan x—J.secx tan?® x dx
= Secx tanx — J'secx (sec® x —1) dx

—=secx tanx — _[secS xdx + Isecx dx

Now, the unknown integral appears in both sides of the equation,

ZI sec’x dx = secxtanx + In|secx + tanx| + c.

j sec®x dx = %(secxtanx+ In|secx + tanx| + c)

Case (3) The integral contain one function not treated by one of the basic rules. In This case

we take this function to be differentiated and integrate dx.

Example (9) Evaluate, I Inx dx.

Solution

Let u=Inx, dv=dx,then du=1/xdx, V= X.

1
Ilnxdx: xlnx—j—xdx:xlnx—x + C.
X
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Example (10) Evaluate, I sin”t x dx.

Solution
Let u=sin?*x, dv=dx., then du=———dx, v=X
I sintxdx = xsin?x — J'L dx
J1-x?
= xsin?x + 41-x* +c.

Example (11) Evaluate, I tanh™ x dx.

Solution
Let u=tanh™x, dv= dx. Then du-= ! —dx, V=X
— X
j tanh™ x dx = xtanh™x — j X ~ dx
1-x

= x tanh™ x +1 In‘l— xz‘ + C.
2

So we can calculate the integral of all inverse trigonometric and inverse hyperbolic functions.

Case (4). Reduction Formulas for Integrals

Integration by parts may sometimes be employed to obtain reduction formulas for integrals.
We can use such formulas to write an integral involving powers of an expression in terms of

integrals that involve lower powers of the expression.

Example (12) Find a reduction formula for Isinn X dx .
Solution _[sin“ x dx = sin"*x sinx dx .

Let u =sin"*x, and dv =sinx dx, then

du = (n —1) sin"* x cos x dx, V=-C0SX.S0
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J'sinn x dx = sin"'x sinx dx
= —sin"™" x cos X + (n—1)J'sin”’2 X €os” X dx
_ s N-1 faN-2 H
= —sin"" xcos x+(n—1) | sin"“ x(1—sin* x) dx

= —sin"" xcos x+(n —1)Isin”’2 xdx—(n —1)Isin" X dx

n jsin" X dx = —sin"" x cosx + (n—l)J.sin"‘2 x dx

n

J'sinn xdx = (_—1J sin™™ x cosx+(n—_1j .[sin”’zx dx .
n

Example (13) Use the reduction formula for Isin” x dx to evaluate
(i) jsin“ X dx . (ii) jsinS X dx .

Solution

(i) Use the reduction formulafor n = 4,

jsin“ xdx = (%1} sin® X cos X + Gj _[sinz X dx

Again, use the reduction formulafor n = 2,

'[sin“xdx: -1 sin® x cos X+ 32 Sin X CoS X + 1 '[dx
4 4 2 2
_l) =3 _3 - 3
=| — [sin” X €c0S X+| — |SIN XCOS X+| — X + C.
4 8 8
(if) Use the reduction formulafor n = 5,
Isin5 xdx = (_—1j sin® x cos X + (ﬂj Isin3 X dx
5 5
Again, use the reduction formulafor n = 3,

—_— 1 3 —
J'sinf’xdx = M+(ﬂj (—1jsin2xcosx+(gjjsin xdx
5 5 3 3

_—sin®x cosx 4sin”xcosx 8cos X e
5 15 15
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Tabular Integration

In case (1) where one of the two functions can be differentiated repeatedly to become

zero, and if many repetitions are required, the calculations can be cumbersome. In situation

like this, there is a way to organize the calculations that saves a great deal of work. It is called

tabular integration and is illustrated in the following examples.

Example (14) Evaluate Ixz cos x dx.

Solution Let f (x) =x* and g(x) = cosx, we list,

f (x) and its derivatives g(x)and its integrals

2

X \-» COS X
ZX\ sin x
2 \ — COS X

0 —sinx

Ixz cos X dx = X sinX + 2xcos X — 2sinx + C.

Example (15) Evaluate Ix3 e”* dx.

Solution Let f(x)=x® and g(x) = e*, we list,

f (x) and its derivatives g(x) and its integrals
X \ e
3X2\ e /2
GX\ e /14
6 \ e’ /8

0 e /16
2X 2X 2X 2X
Ix3ezxdx=x3e _3x2 S pex & _6 S
4 8 16

I PO BT I
2 4 4 8
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Exercises (4.2)

(1) Evaluate the following integral,

o) j x e* dx 2) j X e dx ©) j x2 e dx
(4) j X sin x dx (5) j X COS5X dx (6) j X sin3x dx
7) j X secX tanx dx ®) j x? cos X dx 9) j tan* x dx
(10) [ e sin 2xdx (D) [vx Inxdx (12) [cos™ x dx
(13) j e sinx dx (14) j tanh™ x dx (15) j sin xIn cos xdx
(16) j x% Inx dx (17) j csc® x dx (18) j sech™x dx
(19) ! X sin 2 dx (20) [xtan? x dx (21) ! \/X)Z‘i” dx

(1) Use integration by parts to derive the reduction formula
)] J.x" e* dx=x"e* —n J.x"’leX dx
n _ 1 n-1 n-2
(2) _[tan X dx= (jJ tan X—Itan X dx.
©) j(ln x)" dx=x(Inx)" —n j(ln )" dx

(4) J'cos” X dx = (lj cos"™ x sinx + (n_—l} J'cos”‘2 x dx.
n n

(5) _[sec” X dx = 1 sec"? xtanx + n-2 sec"? x dx
n-1 n-1

(1) Use Exercise (1) to evaluate

@) j x° * dx (2) j x* e dx ©) j (Inx)* dx
4) [(nx)® dx (5) [ sec® x dx (6) [sec’ x dx
(7) Icos5 X dx (8) I cos* x dx (9) Itan3 X dx
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4.3 Trigonometric Integrals

In the previous section we obtained a reduction formula for the integrals of sin" x and

cos" x but we can do this integrals without the reduction formulas as follows.
Isinzx dx = 1 I(l— cos2x) dx = 1 X — lsin2x + C.
2 2 4
) 1 1 1 .
Icos X dx = —_[(1+cost) dx = =X + =sin2x + C.
2 2 4

If the power more than 2, we can use the general cases

0

We will discuss the integral for different values of m, n.

If m isan odd integer.

The integral takes the form,

J.sinm X cos" x dx = Isin”“lx cos" x sin x dx

Use the identity sin®x = 1 —cos®x to express the expression sin™*x cos" x in terms of

cos X, and integrate.

If n isan odd integer

The integral takes the form,

Isinm X cos" x dx = Isinmx cos"™ x cosx dx

Use the identity cos®x = 1—sin®x to express the expression sin™ x cos"™ x in terms of

sin X, and integrate.

If m and n are even integers

1 + cos 2x

1 — cos 2x and cos? x = s to reduce the

Use the half-angle formulas: sin®x =

exponents.

Example (1) Evaluate : J‘sing x cos* x dx
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Solution
J.sin3 X cos* x dx = J.sin2 X cos”* x sin x dx
= .[(1— cos® x) cos* x sinx dx = _[(cos“ X — 00s® x) sinx dx

5 7
: COsS” X Cos’ X
:_I(cos“ X — cos®x) (-sinx) dx = — -+ ot

Example (2) Evaluate : J.sin2 X €0s® X dx

Solution

Isinz x cos® x dx = _[sinz x cos* x cos x dx
H H 2
= Ism X (1 — sin“ x)° cos x dx

= .[sinz X (L — 2sin® x + sin” x) cos x dx
= I(sin2 X — 2sin* x + sin® x) cos x dx
sin®x  2sin°x . sin” x

3 5 7

Example (3) Evaluate : j cos® X dx

Solution

Icos5 x dx = _[cos“x CosX dx = I(l — sin? x)* cos x dx
= j (L — 2sin® x + sin* x) cos x dx

2sin®x  sin®x
+
3 5

= sinx —

Example (4) Evaluate : _[sin3 X dx
Solution
Isin3 X dx = J‘sin2 X sinxdx = I(l— cos® x) sin xdx

cos® x

= —j(l — ©0s” X) (—sinx) dx = — cosx+ +C.
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Example (5) Evaluate : J‘sin2 X dx

Solution
Isinz X dx = _[ 1-cos2x gy =1_[(1—c052x) dx
2 2
1 sin 2x X sin2x
= —(x - ) +C=—— C.
2 2 2 4

Example (6) Evaluate : j cos® x dx

Solution

jcos2 X dx = I 1+ cos2x dx ZEJ‘(l+COSZX) dx
2 2

sin 2x X sin 2x
) +C= > +

1
= = (x +
5 (

Example (7) Evaluate : Isinz x cos’ x dx

Solution
J‘sin2 X cos’x dx = I 1 - cos2x 1+COSZXdx = lJ‘(l—cosz2x) dx
2 2 4
1 1+ cos4x 1
= ||1-|=———||dx==|(@- cosdx) dx
e G ESHRET
1 sin4x X sin4x
= = (x - )+ Cc=—=—
8 4 8 32

Example (8) Evaluate : Isin4 X dx

Solution

Isin“x dx =J.

1-cos2x)’ 1 2
— dx = ZI(1—20032x+cos 2X) dx

{1 — 2C0S2X + (@ﬂ dx

coS 4x} dx

1
4

—EJ' §—20032x+
4 2

3X  sin2x  sin4x
+ ) +¢C
8 4 32
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Similar to the above form (I), we can treat the integral,

If m isan odd integer

The integral takes the form

J.tanm x sec" x dx = Itanm’lx sec"™ x (secx tanx) dx

Use the identity tan®x = sec® x — 1 to express the expression tan™" x sec"™ x in terms of

secx, and integrate.

If n isan even integer

The integral takes the form,

Itanm x sec" x dx = _[tanm X sec"? x (sec® x) dx

Use the identity tan® X = sec?® x — 1 to express the expression tan™ x sec"2 x in
terms of tanx, and integrate.

If m isevenand nis an odd

There is no standard method of evaluation. We may use integration by parts.

Example (6) Evaluate : Itan3 x sec® x dx

Solution

J.tan3 X sec® x dx = Itanz x sec* x (secx tanx) dx

= I (sec® x —1) sec* x (secx tanx) dx

= _[(sec6 X — sec* X) (secx tanx) dx

7 5

sec’ x  sec’®x
+C
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Example (7) Evaluate : j tan® x sec” x dx

Solution

Itanz X sec* x dx = J'tan2 x sec? x sec? x dx

= J'tan2 X (tan® x + 1) sec® x dx
= I(tan“ X + tan® x) sec” x dx

tan®x  tan®x
+
5 3

Integrals of the form, may be evaluated in a similar method.

+C

jsin mx sin nx dx,

D) Isin mx cos nx dx,

Icos mXx cos nx dx

Here we use the product to sum formulas:

sinmx sinnx = % [cos(m — n)x — cos(m + n)X]

i 1, . i
sinmxcosnx = E[sm(m—n)x +sin(m+ n)x

1
COSMX COSNX = > [cos(m — n)x + cos(m + n)X]

Example (8) Evaluate : IcosSx sin 3x dx

Solution

[cosBxsin3xdx = %j(sin8x+sin(—2x))dx =I—61c058x - %cost T
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Example (9) Evaluate : J.sin 4x sin 2x dx

Solution

jsin 4xsin2x dx = % I(cost — C0sS6X) dx = %sin 2X — L Sin6x + C.

Exercises (4.3)

() Evaluate the following integrals,

)] J.cos3 X dx (2) Icoss X sin X dx (3) _[sine X dx

(4) Isin2 xcos® x dx  (5) Itan3 x sec’ x dx (6) Itan2 2x sec® 2x dx
(7) j tan’ xsec>x dx  (8) j tan® xsec x dx (9) ftane X dx

(10) _[sec“ X dx 1) j\/m cos’x dx  (12) _[cosz X sin® x dx

(13) _[sin 5x sin3x dx  (14) jcos“5 xsinx dx  (15) I(tanx + cot )% dx

7l2

26) _[sin axcosax dx  (17) jsin 3x cos2x dx  (18) Icos 2x sin 3x dx
0

sec? x

19) | csc* x cot? x dx 20) | cot? xcsc? x dx 21) [ ——=—
( )I ( )I ( )-[(1+tanx)2

(1) Prove that if m and n are positive integers,

sin(m—n)x sin(m-+n)x
2(m—n) - 2(m+n)
X sin2m
2 4m

+c if m#n

_[sin mx sin nxdx =
+C if m=n

(1) Let m, n be distinct nonnegative. Prove that:

2z 2z 2z
1) Isin mx cosnx dx =0 (2) jcos mx cosnxdx =0 (3) jsin mx sinnx dx =0
0 0 0

(1V) Use the reduction formula to show that,

rl2 n— 1 rl2
_[sin" X dx = _[sin”‘2 X dx.
0 0

n
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Then use this formula to evaluate,

7l2 7l2
(M [sin® x dx (2) [sin* x dx
0 0
7l2 7l2
3 [sin® x dx (4) [sin® x dx
0 0

4.4 Trigonometric Substitutions

The technique here is useful for eliminating radicals from certain types of integrals. The

substitutions are listed in the following table:

Expression in integrand | Trigonometric substitution | Element of integration
\/m X = asiné dx =a cos 6 d6
\/m X = atand dx = asec’ 4 d@
\/m X = asecd dx =asecé tan 6 d@

We shall assume that @ is in the range of the corresponding inverse trigonometric function.

X = asiné X = atanéd

Ja?—x* =acosd JaZ +x% =asecd

Example (1) Evaluate :

[N
x? /16 — x?
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Solution
Let x=4sin@, then,

J16—x? = \J16-16sin’6 =4cosf, dx = 4cos 6 db

J- 1 dx—J. 4 cos0 do _ij- 1
x2 16 — x2 (16sin” @) (4cos@) 16 sin’ 4
= i.[csczéde -~ Llote v
16 16

We must now return to the original variable of integration, x. By drawing a right triangle that
correspondingto x = 4siné, i.e. @ =sin'(x/4).

\J16 — X2 4
Then cotf = +———.

X
Therefore, ]

I—l X =——— 16 -7 + C. 6-%
X2 /16 — x? 16 x

Example (2) Evaluate :

1
=

Solution rx .
Let x =2tand. Then, dx = 2sec?® d&, and, A
J4+x2 = J4+4tan® 6 = 2\/1+ tan? 6 = 2sech ?
2
J.#dx: J-ZSeC—HdH :Isec@d@
[4 + x2 2secd
VA + X
=In|secd + tand| + ¢ = In TJF +§ +C
X?_
Example (3) Evaluate : I dx
9—x?
) 3
Solution 3
Let x =3sind, then, [
9

J9-x2 = \/9-9sin?6 =3cosd, dx = 3cos O d
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2 a2
J- X dx:IQSIn 9cos¢9d0= 9jsin29d0
9 x2 3cosé
_ gjl—ZCosedez g(e_smzej e
2 2

= g (0 —sinfcosh) + ¢

J X gy - g[sinlx —X“gxz} c.

3 9

Example (4) Evaluate :

Solution
Let x =3secd. then, dx =3secd tand d&, and,

WX -9 —Jgsecze-g _3/sec’0 1 = 3tane.
I“X — d —Jgtang35ec:9tan0d6’:3ftan29d0

3secd

:3j(sec29—1) do = 3tand - 36 + c.

x> -9
=3 -3 secl(ﬁj + C
3 3

_ y2)3/2
Example (5) Evaluate : I % dx 1 .
Solution =
Let x= sin@, then, dx = cos @ d@
3/2 _ ein2 n\3/2
I(l _ J-(l s.,ln6 0) s do - ICOS 0 40
sin® @
4
:J-cosg lgd@ jcot 0 csc? 0 do
sin sin

= —J‘cot4 0 (—csc’ 6 dog) =-—

5
5 —1[ 1= %2
co;m_l[v ]
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Exercises (4.4)

Evaluate the following integrals,

1 1
1) | ———d 2) |J4-x*d ) |———d
()J.x\/4—x2 " ()I o ()Jx%/xz—zs "

@ | J4X+T O j(x_;l) @ [V o

7 d 8) | ———d 9 d
()'[36+x) ” ()Ixzwl4x2—9 " ()‘[16—x) ”

3 3

W) [¥ 16 -x* d&x (@) [-———dx (@) (4+XW dx

dx (15) | (4;# dx

1 1
13) | ———d 14) — =
13) J‘x“1/x2—3 " ( )jx4w/4+x2

4.5 Integration of Rational Function Using Partial Fractions

A rational function is a ratio of two polynomials,

_ )
QW) =

where f(x) and g(x) are polynomials.
If the degree of f(x) is greater than or equal the degree of g(x), use long division to

obtain a function of the form,

h(x
Q) =k + )
90’
where the degree of h(x) now is less than the degree of g(x).
Now the rational faction , % is a fraction, and no matter how complicated, it can be
g(x

rewritten as a sum of simpler fractions that we can integrate with techniques we already
know. This method of rewriting the complicated fraction as a sum of simpler fractions is
called the method of partial fractions.

This method may be summarized as, express the polynomial g(x) as a product of

linear factor (ax + b) or irreducible quadratic factors (ax® + bx + c), and collect repeated

96



factors so that g(x) is a product of different factors of the form (ax + b)" and

(ax® + bx + ¢)". Then apply the following two rules.

Rule (1). For each factor of the form (ax + b)", the partial fraction decomposition contains

the following sum of n partial fractions:

A LA LA

oo —D
ax + b (ax + b)® (ax + b)"

where A, A,, ..., A, are constants to be determined. In the case where n =1, only the

first term in the sum appears.

Rule (2). For each factor of the form (ax®> + bx + c)", the partial fraction decomposition

contains the following sum of n partial fractions:

AX + B, N A X+ B, R A X+ B,
ax®+bx+c  (ax®+bx+c)*>  (ax®*+bx+c)"’

where A, A,, ..., A ,B, B,,...,B,, are constants to be determined. In the case

where n =1, only the first term in the sum appears.

5x -10

Example (1) Evaluate: | ——— dx

ple (1 J-x2—3x—4

Solution

5x-10 _ 5x-10 _ A B _AX+D+B(x-4)
x> -3x—-4 (x-4)(xx+1D) x-4 x+1 (x=4)(x+1

The two fractions in the left and right are the same, then
5x =10 = A(x+) + B(x—4)

The coefficients A and B may be determined by two methods
Method 1. Verify both sides for any value of x,

e Forx=-1, -15=-5B, B=3.
e For x=4,10=5A, A=2.
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Method 2. Equating the coefficients on both sides for every powers of x,
A+B=5, A-4B = -10. Solve the two equations to find A=2, B=3.

Then
25X_10 _ 2 3 Therefore
X*—-3x—-4 Xx—-4 x+1
J- 5x -10 _J' dx
x*— 3x — 4 X—4 x+1
=2Injx-4 +3Injx +1 + c.
1

Example (2) Evaluate : Iz— dx

X+ xX—=2
Solution

1 B 1 B A+ B CAX+2) + B(x-1)

X +x-2 (xX-D(xx+2) x-1 x+2 (x=D(x+2)

A(x+2)+B(x—-1) =1. Solveto find, A=1/3, B=-1/3.Then,

I J.E—l/—sd =lln|x—14—1 In|x +2|+c.
X2 4+ X — 2 X-1 x+2 3
) 2X + 4
Example (3) Evaluate : I pw dx
Solution
2x+4  2x+ 4 _A,B C _ AX(x—2)+B(x-2)+Cx’
x*— 2x>  xX*(x-2) x x* x=-2 X% (X + 2)

AX(x —2) + B(x — 2) + Cx* = 2x + 4. Solve to find

A=B=-2, C=2. Then,
2X + 4 -2 2 2 2
IW dx = I(T vl EJ dx :—2In|x|+;+2ln|x—]1+c.

3x® —18x* +29x — 4 i
(x+D(x — 2)°

Example (4) Evaluate : J.

Solution

3x° —18x*+29x—-4 A . B, C D
(x+1) (x— 2)° X+1 x-2 (x=2)% (x-2)°
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Then3x®

_ A(x— 2)® +B(x+1) (x—=2)* +C (x+1) (x— 2)+D(x+1)
N (X +1)(x — 2)°

—18x% +29x—4= A(x=2)% + B(x+1) (x=2)* +C (x+1) (x—=2) + D (x +1)

Solvetofind, A=2, B=1 C=-3 D=2. Hence,

3x® —18x* +29x — 4 2 1 3 2
I 3 dx =I + — >+ 5 | dx
-2 X+1 x-2 (x=-2)° (x=2)

(x+2D)(x
=2 In|x+1|+In|x — 2| + 8 1 .
-2 (x=2)
Example (5) Evaluate : I Xt +x-2 dx
Ve - x? +3x -1
Solution
X2 +x-2 X2 +Xx—2 X2 +x-2

33— x®? +3x -1

T D+ Bx-1D (Bx-D(E+ D

A(X*+1) +(Bx +C)(3x —1)

A N Bx +C
(Bx — 1 (x* + 1)

3x-1 B

x? +1

X> + x—2=AX+1 +(Bx +C)(3x-1).

Solve to find: A = —Z, Bzﬂ, C=§.Then,
5 5 5
X +x-2 ~-71/5 (4/5)x +(3/5)
[ dx = dx
33X — x° +3x -1 3X— 1 x? +1
_ — 7 dx 1 J-4x +3
5 3x—l X +1
_ —7p3dx 2 J- 2xdx §.[ dx
15 3x—1 x> +1 57x%x% +1
_ 7 In|3x —1] + 2 In‘x2+1‘ + 3 tan*x + cC.
15 5

Example (6). Evaluate : j

Solution.

3x* +4x°+16X° +20x+9 A

3x* +4x3 +16x% +20x + 9
(x+2) (x* +3)?

Bx+C Dx+E

(x+2) (x* +3)?

+ +
X+2 x*+3 (x*+3)°
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A +3)? +(Bx+C) (x* +3) (x + 2)+(Dx+E) (x+2)
N (x+2) (x* +3)?

then

X' +4x3 +16x* +20x +9 =
= A(Xx?* +3)® +(Bx+C) (x* +3) (x+ 2) + (DX+E) (x+ 2)
Solve (more complicated) to find, A=1 B=2,C=0,D=4,E=0.Then

X' +4x3 +16x* +20x + 9 1 2X 4x
_[ 2 2 dx = = t 3 t 3 2
(x+2)(x*+3 X+2 x*+3 (x*+3
, 2
= In|x+2| + In‘x +3‘ : +C
X° + 3

4 3 2
Example (7). Evaluate : '[BX +3)§ oX 2+X 1dx
X°+ X —

Solution.
In this example the numerator has degree 4 and the denominator has degree 2. Thus, we first

perform a long division to obtain

J-3x4+3x3—5x2+x -1

1
1 %2 —.[(3X +1)+—— dx

X% +x-2

The second integral was treated by partial fractions in example (2), hence,

J-Sx“ +3x3-5x* +x-1

) dx =x3+x+lln|x—]4 1 In|x+2| +c.
X+ X—2 3 3

Exercises (4.5)

Evaluate the following integrals,

O o a ® @5
@] (x+1;3(7x_—121)?x—3) 0[5 o
()j( —1) dx (G)Iﬁdx
@) jXX_+—2)1(6_8 dx ®) j% dx
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X° +2x% +1

2x* — 25x — 33
w)ju+3%x—a amI_TFT?__W
@y | L"XZ dx @2) | ﬁ dx
10x* +9x +1 x> +x— 16
43 J2x3 +3x% + X dx (14)I (X +D(x - 3)?
Ox* +17x® +3x* —8x + 3 2x* - 1
19 I x° + 3x* o (16)-[(4x ~1)(x* + 1) dx

4.6 Integrals Involving a Quadratic Expression

Integrals that involve a quadratic expression ax”* + bx + ¢, where a=0 and b =0, can

often be evaluated by first completing the square, then making an appropriate substitution.

The following examples illustrate this idea.

Example (1) Evaluate : ~[+8 dx
X —4X +

Solution Completing the square yields
X*—4x+8=x"-4x+4 -4 + 8
= X°—4Xx+4 + 4= (x—2)* + 4.

Thus, use the substitution, u = x — 2, du=dx Yyields

X u-+2
Ix2—4x+8 _I(x 2)% +4 _Iu ¢
:Iu2u+4 au +Iu2+

=1In(u2+4) +of PantfY) 4 ¢
2 2 2

:% In((x — 2)° +4) + tan‘l(x;zJ +C..

1
:_Iu +4 J.u2+4

2x -1

Example (2) Evaluate : jﬁ
X“— 6X +
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Solution Completing the square yields
X*—6Xx+13=x"-6x+9 -9 + 13 = (x—3)* + 4.

Thus, use the substitution, u = x —3, du =dx vyields

du

I 2x -1 _[ 2x -1 dx I2U+5
x2—6x+13 (x-3)° +4 u® + 4

du = In(u® +4) + S(EJ tan‘l(EJ +C
4 2 2

1 5 X -3
==In((x-— 3% +4) + Ztan|=—=| +c.
SN = 37 +4) + ( ; j

_-[u +4 -[

Example (3) Evaluate :

I L dx

X2+ 8x + 25
Solution Completing the square yields
X*+8X+25=x"+8x+16-16+ 25= (X +4)°+9.

Thus, use the substitution, u = x +4, du=dx Yyields

dx =

1 1 1
= [—— B
Iw/x2+8x+25 " Iw/(x+4)2+9 Iw/u2+9 :

=sinh™ (%) +¢ = sinh™ (X%ﬂ +c

Example (4) Evaluate :

I ! dx
\ 8+ 2x —x*
Solution Completing the square yields
8+2Xx —x"=8-(x*-2x) =8+4+1— (X*=2x+1D =9—- (x—1)°?

Thus, use the substitution, u = x—1, du=dx Yyields
1 1 1
I,/8+2x—x2 Iw/g—(x—l)2 J1/9—u2

_sin?[ Y o X =1
= §+c_sm T+c.
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Exercises (4.6)

Evaluate the following integrals,
dx

@ Ix + 2X + SdX (Z)Ix2—4x+13 (3)~[ 4x+8dx
xdx 1 dx
5 | ——d 6
()J +10 ©) I1/4x—x2 " ()Jw/x2 —6x +10

1 1
N [————dx @ [J4-x*d 9 d
()J‘w/9—8x—x2 " ()I » ()I\/x2+4x+5 "

(10) ng 16 — x* dx

1
11 d 12
( )J.\/x2+6x+1 x )J.w/4+x

d«  (@5) | m dx

@) | ﬁ dc (4 |

e* dx

3
(16) jex 1— e dx (17) jm dx (18)jm
2

4.7 Miscellaneous Substitution

In this section we shall consider substitutions that are useful for evaluating certain types of
integrals.

The following examples illustrate different substitutions.

X3
dx
3x* + 4

Example (1) Evaluate, f

Solution
The substitution u =3/x? + 4 leads to,

u!=x*+4 or x> =u®-4 and 2xdx =3u?du, then,

x® 1 x?
vt e

=—u?(u? —1O)+c:%(x2 + 4)#3 (x* - 6)+cC.
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Another Solution

We can use the substitution u = x*> + 4 that will leadsto, x> =u —4 and 2xdx = du,

then,

Ig\/m L\/ﬁ

5/3
= %j(uz’3 —4u™"?) du = %(3u5 ~ 6u2’3) +C

(2xdx )——j” 4 du

1/3

3 2/3 3 2 2/3 2
=—u u-10)+c=—(x" +4 X° —6)+cC.
10 ( ) 10( )7 ( )

Example (2) Evaluate, _[ \/_—13\/_ dx.
X +

Solution

We can use a substitution that will eliminate the two radicals, we use u® = x or u = x*

then dx = 6u° du,

1 1
——dx = 6u°du =
I\/;+%/; J‘u9’+u
3 1
By long division, =u’-u+1-——
+ u+1
Then,
1 1
dx=6||u*-u+1————|du
'[\/;+‘°{/§ I[ u+1]

3 2
:6£u——u—+u—ln|u+]4j+c

3 2
:Zf—3W+6W—6In‘W+4+c
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Theorem (4.6.1)

If an integrand is a rational expression in sinx and cosx, then the substitution,

u=tan (x/2) for —z < x <z will transform the integrand into a rational expression in u

with

Proof
[xj 1 1 1
cos| — | = = = .
2) sec(x/2) \1+tan*(x/2) 1+ U’
sin [fj = tan(zJ cos(ﬁj = u
2 2 2)  Jiyu?
Then

. . (X X 2u
sinx=2sin|—|cos| —| =
(2) (2) 1+ u?

2u  1-u’
1+u® 1+u?’

cosx:1—23in2(§j =1-

Since x/2 =tantu, we have x = 2tan*u and therefore,

dx = 2 5 du
1+u
1
Example (3) Evaluate, _[ - dx.
4sin X — 3¢0S X
Solution
Use the substitution, u = tan(x/2) , then
_ 2
sinx = 2,cosx:1 uz, dx = szu
1+u 1+u 1+u
I . ! dx:j ! 2 > | du
4sin X — 3¢os X 2u 1-u?)\1+u
4 2 -3 2
1+u 1+u
S
3u® +8u -3

Using partial fractions, we have

105



1 1 3 1
u?+8u-3 10(3u-1 u+3
[— L dx = —j( ]du
4sin x — 3€0s X -1 u+3
:%(In|3u—]j—ln|u+3|)+c=%ln ?Ju+—31 +C
|3tan(x/2) 1|
| tan(x/2) + 3|
Exercises (4.7)
(1) Evaluate the following integrals.
1 2) | x 3/x+9 dx
o j“f @ [x 3
1 X
3 dx 4
()I(x+1),/x—2 ()I3,/3x+2
Xx+1
5 6
()IW ()j f
(7 JeSX 1+e* dx (8) jex 1+e* dx
9 jsin X+ 4 dx 20) Icos,/x+1dx
X+1
11 12
( )j( Y ( )IW
sin x
13 1y [— =
( )Icosx(cosx—l) ( )I1+smx+cosx X
sin 2x
15 d 16 d
( )Isinzx—ZSinx—S X ( )Ismx J3cosx X

(1) Prove that:

1+ tan [;j
(1)jsecx dx = In—————=

1-tan (Xj
2

+ C.

1 - cosx
1+ cos X

1
2)|csex dx ==In
@] >
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Chapter (5)
Applications Of The Definite Integral

5.1. Area
The area of any region may be considered as the area between a curve of a function and an

axis or the area between two curves

5.1.1. Area between curve and axis

Consider that the function y = f(x) is continuous and non negative on [a, b], then the area
A of the region bounded by the curve of the function y = f(x) and the x-axis over the
interval [a, b] is obtained by integrating wr=f
the element area dA of the vertical rectangle (strip) of width
dx and length f(x) as illustrated in Fig. (5.1).

d4

The element area of this stripis: dA = f(x) dx.

Hence the area of the region, i Fig. (g.l) ’

d

x=g()
If we consider that the function x = g(y) is continuous dv
and non negative on [c, d], then the area A of the region a4
bounded by the curve of the function x = g(y) and the ‘
y-axis over the interval [c, d] is illustrated in Fig. (5.2) as
Fig. (5.2)

Example (1) Find the area of the region bounded by the graph of the function y = x* +1

and the x —axis from x = -11t0 x=2.
Solution
As shown in Fig.(5.3), we use a vertical strip of width Y

dx and length (x* — 1), then,

y=x*+1
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2 Ve 2
A = I(x2+1)dx = — +X
: 3 4

- g +2- _?1 —(-1) = 6 square units. Fig.(5.3)

Example (2) Find the area of the region bounded by the graph of the function y = cos x
and the x—axis from x =0 to x=x/2.
Solution As shown in Fig. (5.4), we use a vertical strip of width dx and length (cos x),

then

wl2

A = Icosx dx = sin x[J'? =

=sinz/2 — sin0

=1-0 = 1 squareunits.

Example (3) Find the area of the region bounded by Fig. (5.4)
the graph of the function y = x® and the y—axis from '
y =0 to y=8. dy

Solution

‘"
I
R

As shown in Fig. (5.5), we use a horizontal strip

0
of width dy and length x = 3/y, then Fig. (5.5)

41378

} = %%/8_4 = 12 square units .
0

8
A = J‘y1/3 dy = 3y
0

5.1.2 Area between two curves

If f,(x) and f,(x) are continuous functions on the Y=H® a4
interval [a, b], and if f,(x) > f,(x) forall xin [a, b],
then the area of the region bounded above by y = f,(x), o

=H()
and below by y = f,(x), on the left by the line x = a ¥

and on the right by the line x = b can be obtained by

considering a vertical rectangle (strip) of width dx. Fig. (5.6)
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The length of the strip f,(x)— f,(x) as illustrated in Fig. (5.6). The element area of this strip

is: dA =[f,(x) — f,(X)]dx . Hence the area of the region is,

A=hnm—uanw

Similarly If g,(y) and g,(y) are continuous functions on the interval [c, d], and if
g,(y) =2 g,(y) forall yin [c, d], then the area of the region bounded right by x = g,(y),
and left by x = g,(y), and from above and below by the line y = d, and the line y =c can

be obtained by considering a horizontal rectangle il
(strip) of width dy . The length of the strip x=g,0)

x=g()
9,(y)—9,(y) as illustrated in Fig. (5.7). dy

The element area of this strip is:

dA = [g,(y) — g.(¥)] dy.
Hence the area of the region is, Fig. (5.7)

A = [9,(y) — 9,(¥)] dy

Example (4) Find the area of the region bounded by the parabola: y = x* and the line:
y=X+2.

Solution

The limits of integration are found by solving the
equations of the curve and the straight line to obtain the

points of intersectionas x = —1and x = 2.

Use vertical strip Fig. (5.8) of width dx and length
[(x +2) — x*], then

2 X2 X3 2
A:.[[(x+2)—x2]dx = |-+ 2x -2
J 2 3],

1027 9 s square units..
3 6 2
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Example (5) Find the area of the region bounded by the graphs: y = x?,

x=0 and x=1.
Solution As shown in Fig. (5.9), we use a vertical strip

of width dx and length (2x — x®), then

A = Jl'(2x - x)dx = {XZ—X—A}

0

Il
1
<

N
|
A|><J>
| |
o\
Il
[N
[
NI
Il
Mlow

Example (6) Find the area of the region bounded by the
graphs: y = sec®’x, y=sinx, x=0 and x=7x/4.
Solution

As shown in Fig. (5.10), we use a vertical strip of width

dx and length (sec®x — sinx), then

7l4
A= I(seczx —sinx) dx = tanx + cosx];'’
0

= @1+ O+1 =

J2

~ 0.707 square units.

1
2"

Example (7) Find the area of the region in the first
quadrant that is bounded by the graphs:

y =:/X, y= x—2,and the x—axis .

Solution

As shown, in Fig. (5.11) we partition the region at x = 2

into two sub-regions A and B and evaluate the area of

dx

x=xni4

Fig. (5.10)

1 ;
(L\‘/Z 4

Fig. (5.11)

each sub-region separately. We use a vertical strip for each sub-region.

Total area = area of the region A + area of the region B

:f&dx +j£[\/;—(x—2)]dx :i&dx +j&—x+2)dx

2 2 9 G )
:_XS/z:l L Ly 2 oy
.3 2

2
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2 3/2 2 3/2 2 3/2
- {5(2) - o} - [(5(4) -8+8) - (S —2+4)}

%(8) -2 = % ~ 3.333 square units.

Another Solution
We can take the region as one region [Fig. (5.12) if we
consider horizontal strip of width dy and length

(y +2—y?), then

2 2 372
A= j(y+2— y?) dy = {y?ﬂy—y?} Fig. (5.12)
0 0

=(6 —gj = % ~ 3.333 square units.

Example (8) Find the area of the region that is

bounded by the graphs: y =e*, y=Inx, x=1and x=2.

Solution "
As shown, in Fig. (5.13) we use a vertical strip - |-
of width dx and length (e* — Inx), then ems L ®

A= (eX —In x)dx=(eX - xInx + x)f = 5.284479909 Fig. (5.13)

P C— N

Example (9) Find the area of the region that is bounded
by the graphs: y =sinh3x, y=0, and x=1.
Solution

As shown, in Fig. (5.14) we use a vertical strip of width dx

and length sinh3x , then

o dzx i

1
% ['3 sinh 3x dx Fig. (5.14)
0

1
A= jsinh 3x dx
0

%(10.067662 — 1) = 3.022554 .

(cosh 3x);

Wl
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Exercises (5.1)

(1) Sketch the region bounded by the graphs of the following equations and find its area.
(1) y=x*+1, y=x-2, and xe[-2 3].

2 y=x*+2, y=x-1, and xe[-1 2].

(3) y=x*and vy = 4x.

(4 y=x>and y = X + 6.

(5) y=x*+1and y=5.

6) y=x>*-—2and y=2

(7) y=4-x, y=3x and y=x.

8)y = x* and y =8x.

(9 y=1/x*, y=-—x* and xe€[,2].

(10) y =1/x*, y=x* and y=2.

(11) x=4y—-y* and x=0.

(12) y=1/x, y=x and x2>0.

(13) y=x*-x and y=0.

(14) y=x>-x, y=x* and y=2.

(15) y=sinx, y=cosx and x €[0, 2x].

(16) y = 8cosx, y=sec’x, x = —3z/4and x=7x/3

(17) y=+/x, and y=x*.

(18) y = sinx, y=cosx, x = 0and x=2x

(19) y+x*=6, and y+2x—-3=0.

(20) y=2sinx,y=sin2x,x =0 and x=x

(21) y=x*-1 and y=1-x°.

(22)
(23)

=x> and y=2-x°
=Inx, y=In2x, x=1 and x=5

X 2x

=e", y=e", and x=1In3

y
y

(24) y=coshx, x=0 and y=2
(25) y
y

(26) y =e™?*, y=¢"", and x=2In2.
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5.2 Volumes of Solids of Revolution
solids of revolution are solids whose shapes can be generated by revolving plane regions
about axis. This axis is called the axis of rotation. As illustrated in Fig. (5.15), the solids of

revolution are generated from the rotation of the corresponding plane regions about the
indicated axis.

/w)/‘
|

L
: y=5Hx)

z &

Fig. (5.15)
In this section we shall discuss several methods for finding volumes of the solids of

revolution.
Consider a rectangle strip across the plane region, If the volume of the solid generated by
revolving this strip about the axis of rotation is dv, then the volume of the solid generated by

the plane area is ,

According to the solid generated by rectangular strip, we have the following methods.
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5.2.1 Volume by Disk

This method is useful when the axis of rotation is part of the boundary of the plain

area. In this case, we choose the rectangular strip perpendicular to the axis of rotation. The
solid generated by revolving the rectangular strip about the axis of rotation is a disk (or
cylinder)..

4)

\ A

Fig. (5.16)

The element volume of this disk is,

dv = 7 (radius)? (thickness) .

Now let f(x) be continuous for x e [a, b], 70

and let R be the region bounded above by the

graph of f(x) and below the x-axis and on
the sides by the lines x=a and x=b. Fig. (5.17)

The VVolume V of the solid of revolution

generated by revolving R about the x-axis is,

Similarly, if g(y) be continuous for y €[c, d], and let dy

[

R be the region bounded from right by the graph of g(y)

and from left by the y-axis and on the sides by the lines 2(¥)
y=cand y=d. @

The Volume V of the solid of revolution generated by Fig. (5.18)
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revolving R about the y-axis is,

Example (1) Find the volume of the solid generated by revolving the region bounded by the

graphs of y = x* + 1, the x-axis and the lines x =—1, and x =1 about the x-axis.

Solution

Use vertical strip of width dx , the radius of the

disk f(x) = x* +1, then

y=2+l1

1 1
V= ;rj(xz +D2dx = ﬁj(x4+2x2+1)dx
-1

-1

X 2xd | 28 28
=ﬂ|:—+T+X:|l=7T[(E)—(—E) @

x=-1 & x=l

= % 7 ~ 11.7 cubic units. Fig. (5.19)

Example (2) Find the volume of the solid generated by revolving the region bounded by the
graphs of the equation y = VX , the x-axis and the lines x =1 and x =4 about the x-axis.

Solution
Use vertical strip of width dx , the radius of the disk

f(x) = /x, then

4 4 274
V:ﬂI(\/;)2 dx = ﬂjxdx :ﬂzx}
1 1 1

=87 - % = 157” ~ 23.56 cubic units Fig. (5.20)

Example (3) Find the volume of the solid generated by
revolving the region bounded by the graphs of y =e”*, the
x-axis and the lines x =0 and x =1 about the x-axis.

Solution.

Use vertical strip of width dx, the radius of the disk
f(x) =e*, then Fig.(5.21)
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1
(") dx = 7 [e* dx= %e“]ﬁ, = %(ez _1) = 10.03590585

0

V=ur

O ey

Example (4) Find the volume of the solid generated by revolving the region bounded by the
graphsof y=1/x, y=1, y=3, x=0 aboutthe y-axis.

Solution. @i L5\
Use horizontal strip of width dy , the radius of the "

. y=1x

disk x=1/y then

3 2 3 T
V:ﬂj‘(ij dy:ﬂ_—lj
1Y Y i

= 7 (-1/3 + 1) = 2.094395102 Fig.(5.22)

Example (5) Find the volume of the solid generated by revolving the region bounded by the
graphs of y = e*, the y-axis and the line y =2 about the y-axis.

Solution.

Use horizontal strip of width dy , the radius of the
disk x =Iny then 7

V=rx|(lny)’dy = 7r[x(lnx)2 —2xlnx+2x]12

P C— N

= 7(2(IN2)°—4In2 + 2) = 0.5918377 Fig.(5.23)

5.2.2 Volume by Washer
Let us next consider the region R of the type illustrated in Fig. (5.24). If this region is

revolved about the x-axis, we obtain the solid in the same figure. If g(x) >0 for every

x € [a, b] there is a hole through the solid.
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y=fx) j
=gx)y N

Y.

Fig. (5.24)
In this case we can choose the rectangular strip perpendicular to the axis of rotation. The solid
generated by revolving the rectangular strip about the axis of rotation is a washer .

The element volume of the washer shown in Fig. (5.24) is,

dv = [ (outer radius)® — (inner radius)? ] (thickness).

Now let f,(x) and f,(x) be continuous for }’=f1(x)

x € [a, b], Fig. (5.25), and suppose that w
f,(x) > f,(x) forall xe[a, b]. @ . y=fg'(X)
let R be the region bounded above by the { dr b
graph of f,(x), below by the graph of f,(x),

and on the sides by the lines x =a and x=b. Fig. (5.25)

The Volume V of the solid of revolution generated by revolving R about the x-axis is,

Now let g,(y) and g,(y) be continuous for y € [c, d], é = &)
. x =g,
Fig. (5.26), and suppose that g,(y) = g,(y) forall *

y €[c, d].
Let R be the region bounded above by the graph of

g,(y), below by the graph of g,(y), and on the g‘(")

sides by the lines y=cand y=d.

The Volume V of the solid of revolution generated
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by revolving R about the y-axis is, Fig. (5.26)

Example (6) Find the volume of the solid generated by revolving the region bounded by the

graphs of the equation y = x> + 2, 2y —-x—-2=0, and the lines x=0 and x=1

3

about the x-axis.
Solution o
Use vertical strip of width dx which generate a washer

i

of thickness dx.

The outer radius of the washer is f,(x) = x* + 2

and the inner radius

is f,(x) =%x + 1, then,

V = 7r_l[[(x2 +2)* — (%x + 1)2} dx =ﬁj{x4 - =x® - x4+ 3}dx

5 3 2 !
=7 X—+E XX + 3X| = E;z ~ 12.4 cubic units.
5 41 3 2 . 20
Example (7) Find the volume of the solid generated by revolving the region bounded by the
graphs of the equation y = x* + 1, and y + x =3 , about the x-axis.
Solution Use vertical strip of width dx which generate a washer of thickness dx.
by
y+x=3

The outer radius of the washeris f (x) =—x+3

and the inner radius is f,(x) = x* + 1. The limits

of integration may be obtained as the points of

y=x +1

intersection of f(x) and g(x), these points are A @
1

"

2 dx
x=-2and x =1, then Fig. (5.28)

V=7Z'j-[(—X+3)2—(X2+1)2]dX =7Z'j.[8—6X—X2—X4]dX

5 1
:72'(8X—3X2———— ] :%ﬂz73.5 cubic units.
-2
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Example (8) Find the volume of the solid generated by revolving the region in the first

3

quadrant bounded by the graphs of the equation y = éx ,and y =2x , about the y-

axis.
Solution @
Use horizontal strip of width dy which generate . }
a washer of thickness dy . o f,/
The outer radius of the washer is g,(y) = 2%/? ys,e
and the inner radiusis g,(y) = y/2. r xﬁ
The limits of integration may be obtained as . ))/
x=—-2and x =1, then Fig. (5.29)

8
v =z [|@3fy)* - (y/2)?Jay

0

S PPYPR 12 55 1 ,) 512 N
=7 ! [ay?e — y2 1a]dy = ﬂ[gy ~5Y jo. =~ 7 ~107:2 cubic units

Example (9) Find the volume of the solid generated by revolving the region bounded by the
graphs: y=Inx, y=0, and x =c, about the y-axis. @s

Solution Washerfor 0<y<Inc

nc

Inc Inc

V=r .([[2—(ey)2]dy :ﬂ[czy—%ezy}

= E(Cz Inc—%c2+ij

0

2

/ Fig. (5.30)
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5.2.3 VVolume by Cylindrical Shell

In the preceding sections we found volumes of solids of revolutions by using rectangle strip

perpendicular to the axis of rotation to produce disk or washer. For certain types of solids, it is
difficult to use the above methods, so it is convenient to use rectangle strip parallel to the axis
of rotation which produce hollow circular cylinders, that is, thin cylindrical shells of the type
illustrated in Fig. (5.29).

——x—

a &

Fig. (5.31)

In Fig. (5.31), r, is the outer radius, r, is the inner radius, h is the altitude and dr =1, —r, is

the thickness of the shell. The average radius of the shell is r = %(rl +1,). The volume of the

shell is,
dV =zr’h—zrfh=x(@? - r/))h =z +1r,)( —r)h
=2ﬁ95;2m(q—5)=2ﬁwmh

which gives us the following general rule

dv = 2z (average radius) (Altitude) (thickness)

The average radius is the distance between the strip and the axis of rotation.
The volume of the solid generated by revolving the region bounded by the graphs of

y = f(x), x-axis, x =a and x =b about the y-axis is

: <
V= 27[x f(x)dx yete-d

Example (10) Find the volume of the solid generated by revolving

dx 2

the region bounded by the graphs of the equation y = 2x — x?, /Ok" \
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and the x-axis about the y-axis Fig. (5.32)
Solution
Use vertical strip of width dx which generate

a cylindrical shell of thickness dx and average radius Xx.

2x®  x* ? 87
3 4 )

2 2
V = Zﬂ'J.X (2x — x?) dx = Zﬁj (2x* —x)dx = 27{— -—
0 0

Example (11) Find the volume of the solid generated in example (10) if the rotation about

the line x = -3 @

Solution /Y—Z\E

Use vertical strip of width dx which generate

a cylindrical shell of thickness dx and average ‘

radius x+1. PRI
2 2 L

V= 2z[(x+1) 2x—x*) dx = 27z[ (2x+x* = x°) dx Fig. (5.33)
0 0

3 42
Coplxe s XX 107 46
3 4) 3

Example (12) Find the volume of the solid

generated in example (10) if the rotation about

the line x =3
Solution | | -
Use vertical strip of width dx which generate Fig. (5.34)

a cylindrical shell of thickness dx and average radius 3 — Xx.

2 2
V = 2ﬁj(3 —X) (2x — x?) dx = 27[] (6x —5x* + x°) dx
0 0

3 4\2
_onlax S 2K L X 167 68
3 4) 3

Example (13) Find the volume of the solid generated

by revolving the region bounded by the graphs of the 1 ¥ 3

equation y = x*,and y = x+2 about the line x = 3 Fig. (5.35)
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Solution
Use vertical strip of width dx which generate a cylindrical shell of thickness dx and average

radius 3 — X.

2 2
V= 2nj(3—x)(x+2—x2) dx= 27;J (6+x—4x"+x°) dx
1 -1

3 4\2
_onlae X X 167 e
3 4 3

Exercises (5.2)

(1) Find the volume of the solid generated by revolving the region bounded by the following
curves about the x-axis.

@ y=x, y=0 and x=1.

2 y=2x, x=0 and y=1

(3 y=1/x, x=1, x=3, y=0.

@ y=x", y=+x.

G) y=x), x=-3, y=0.

6) y=x-x*  y=0.

(7) y=x} y+x=10, y=1

8 y=x% and y=2-x.

9 y=x*, y=2-x.

(10) y=x* y=0 and x = 2.

(11) y=2-2x*, y=1-x*.

(12) y= x>, x=0 and y=1

(13) y=x*, y=-x°

(14) y = cosx, y=x+1 and x=x/2.
(15) y=sinx, x=xld x=x/2, y=0.
(16) y=sinx, y=0 and x=x/2.
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(17) y=cosx, y=x+1, x=xl2

(1) Find the volume of the solid generated by revolving the region bounded by the following
curves about the y-axis.

(1) y=1/x, y=1, y=3, x=0.
(2) y=1/x*, y=1, y=2, x=0.
(3) x+3y=6, x=0, y=0.

4 y=1-x, x=0,y=0

(5) y* =x, 2y=x.

6) y=x*, y=2, x=0

M) y=x, y=4x

8 y=x*, y=x

(9) y*=x, y*=2—-X.

(10) y=1-x*, x=0, y=0

(11) x+y=1, x—-y=-1,y=0, x=2.
(12) y=1+x, y=1-x, x=0, y=0
13) y=+vx, y=x°

(14) y=vx, y=x

(15) y=49-x*, x=0

(16) y=+9—x
(17) x=y* -4, x=0, y=0.

(18) x=4y—-y*, x=0

(1) Find the volume of the solid generated by revolving the region bounded by the
following curves about the indicated axis of rotation.

1) y=x% y=x; about x = 3.
2 y=x%, y=+x; about x =-3.
(B) x=Vy*, x=y+2; about y=4.
(4) x=y*, x=y+2; about y=-2.
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(6) y=x, y=4x; about y =8.

6) y=x*, y=4x; about x =-2.
(7) y=x°, y=4x; about x =4.
8) y=x*, y=4x; about y =-3.
Q)x+y=3,y+x*=3; about x =2.

(10)x+y=3,y+x*=3; about y=1.
(11) y=1-x* x-y=1; about y=3.
(12) y=1-x*, x—y=1; about y=-5.

(13) y=41-x*, x+y=1; about x-axis

(14) y=41-x*, x+y=1; about y-axis

(15) x=vy*, x=y+2;  about y-axis.

(1V) Find a formula for the volume of the following indicated solid.
(1) A sphere of radius r.
(2) A right circular cone of altitude h and radius r.

(3) Aright circular cylinder of altitude h and radius r.

5.3 Arc Length and Surface Area
5.3.1 Arc Length

For the surface area of a solid of revolution generated by revolving the curve y = f(x)about

an axis of rotation, we must determine the length of the graph of the function y = f (x).

To obtain a suitable formula for the arc length, we consider a smooth curve (A function with a

continuous first derivative is said to be smooth and its graph is calleg a smooth curve).
Let y = f(x) be asmooth curve, on a closed interval -
[a, b]. Let L is the length of the curve
y=1f(xX); xeg[a,b]. >
The length of a small line segment :
2 2 b
dL =1+ (%) dx Fig. (5.36)



The length of the curve is defined as,

b d 2 b 5
L:! 1+(d—ij dx= [J1+ (f'(0)f dx

a

Also if x = g(y) be a smooth curve on a closed interval [c, d]. The length of a small line

segment

Example (1) Find the arc length of the curve y = x¥? from x=0to x=5.
Solution

Since y' = = x? which is continuous on [0, 5] . So y = x*? is smooth curve on [0, 5],

N W

and,

Example (2) Find the arc length of the curve x = y¥? —1 from y=0to y= 4.

Solution

Since Z—X = g y"2 which is continuous on [0, 4] . So x = y*? —1 is smooth curve on
y

[0, 4], and,



Example (3) Find the arc length of the curve y =coshx from x=0 to x=1.

Solution
Since y' = sinh x which is continuous on [0, 1] . So y = cosh x is smooth curve on [0, 1],

and,
1 1
L = [y1 + sinh?x dx = [coshx dx = [sinhx]; = sinh (1)
0 0

1 -1

e —€

= 1.1752

Example (4) Find the arc length of the curve 24xy = x* + 48 from x = 2to x = 4.

Solution

4 —
Since y' = X—216 which is continuous on [2, 4] . So 24xy = x* + 48 is smooth curve

8x
on [2, 4], and,
4 4 2 4
L:Jix;zle dXZEJ.(XZ"'gjdX

> | 64 X 8 3 X

3
=l X_ — E — E ~ 2.83.
81 3 X ), 6

5.3.2. Surface area of Solid of Revolution

A surface of revolution is a surface that is generated by revolving a curve about an axis that

lies in the same plane as the curve.

¥ =f) v = fO
R
a 5
Fig. (5.37)
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Let f be a function that is non-negative throughout a closed interval [a, b]. If the graph of fis

revolved about the x-axis, a surface of revolution is generated.

Suppose that a smooth, nonnegative function y = f(x) on [a, b] and that a surface of
revolution is generated by revolving the portion of the curve y = f(x) between x = a and

x = b about the x-axis .

Consider an element length dL of f(x) is revolved about the x-axis, then the surface
generated is a frustum of a cone having base radii r, and r, and slant height dL. It can be

shown that the surface area is
dS = z(r, +r1,)dL = 27 [%) dL

that is,
dS = 2z (average radius) (slant height) .

S = 27zif(x) J1I+ ') dx.

Now, if x = g(y) is smooth and nonnegative function on [c, d], then the area of the

Then,

surface generated by revolving the graph of x = g(y) between y = c and y =d about the

y-axis is,

Example (5) Find the area of the surface that is generated by revolving the arc of the curve

y = x® between x =0 and x =1 about the x-axis.

Solution y = x*, y' = 3x?, then
b 1

S=2r J‘y,/1+ [y dx = 27 jxs 1 +9x* dx
a 0

1
- 2—”.3(1+9x4)3’2} ~ 3.563
36 3 .
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Example (6) Find the area of the surface that is generated by revolving the curve
y = 2/x between x=1and x =2 about the x-axis.

Solution

y:2»\/;, y':%

b 2
S=2x _[y 1+ [y]) dx= 27 I2&1/1+1dx
a 1 X
: 2 ° 8rx
=47rJ.,/ X +1dx=4r 5(x + 1)3’2} - (3+3-2,/2)~19.8
1 1
Example (7) Find the area of the surface that is generated by revolving the arc of the curve
x = y® between y =0 and y =1 about the y-axis.
Solution

X =y?, g—;: 3y?, then

b 2 1
S= 27 [x /1+(?j dy = 27 [y*J1+9y* dy
a y 0

1
= 2—”.3(1+9y4)3’2} ~ 3.563
36 3 .

Example (8) Find the area of the surface that is generated by revolving the arc of the curve
y? +4x = 2Iny between y =1 and y =3 about the y-axis.

Solution
1 dx 11
X ==(2lny —y?), — = Z| = —vy|, then
4( y y) dy Z(Y y)
dx 11 101
14+ | & =1+ S -2+y =2 S +2+y°
dy 4a\y 4\y
1(1 2o (14+y2 Y
SO
4\ 'y 2y

2 (1+y? F
S=2rx Iy[—zy j dy = 7 I(1+y2)dy
1 y 1

= 7 (y+ Y3 = 2(12- 4/3)~ 335
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Exercises (5.3)

(1) In the following problems, find the arc length of the following curves from the point A to

the point B.

1) y=x"%

(2 y=3x¥? -1

(3) x=3y¥2 —1;

(4) y=x112 + 1/x
(5) 24xy = x* + 48;
(6) y=(x* + 8)/(16x?)
(7) 27y* =4(x - 2)%;

©) y=5-Vx:

@ (y+1*= (x-4)%

(10) y = 63/x% +1;
(11) y=6x*®+1;

(12) y =3 (x* +2f ;

(13) y= x*/12 +1/x;
(14) x= y®/3+1/4y;

(15) y +1/4x +x*/12 =0;

(16) x= (U3)y® -y

(17) 30xy® — y® =15;

(18) x= y*/4 +1/(8y?);

A(0,0), B(55+5)
AQ,-1), B(,2)
A(-1,0), B(234)
A(1,13/12) , B (2, 7/6)
A(2,43), B4 7/6)
A(2,9/8), B (3, 737/144)
A(2,0), B(11,6+3)
A4, B(@4-3)
A(5,0), B(@87)
A(1,7), B(s8,25)
A7), B(8 25
AQ, 22 13) , B (3, V11° /3)
A1, 13/12) , B (2, 7/6)
A(7/12, 1), B (109/12, 3)
A(1,13/12) , B (2, 7/6)
A(-2/3,1), B(6,9)
A (8/15,1), B (271/240, 2)
A(3/8, 1), B (129/32, 2)

(19) x=y*/16 + 1/2y2%; A(9/16,1), B(9/8,2)

(1) Find the area of the surface generated by revolving the following curves about the x-axis .

(1) 4x=y?
(2 y=7x;
() y=x%

@) x =y,

A(0,0), B(2)
A(0,0), B(7)
Al 1), B (2, 8)

A1), B (2,4)
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(G)8y =2x*+ x2:; A(1,38), B(2 129/32)
6) y = Jx, A1), B (4, 2)

() y=2x+1; A2, B34
®y=+y4-x*,  A(L3), B(13)

(1) Find the area of the surface generated by revolving the following curves about the y-axis

1) y=23%x; A(L,2), B84

() x=y%/3; A(0,0), B(13 1)
() x=4./y; A4, 1), B(1209)

(4) x=y¥*/13 — y"*: A(0,0), B(-2/3,1)

(B) y= 425 - x*; A(-3,4), B(@3,4
6) x=24—-y; A40), B (2, 15/4)

(7 y= %(x2 +2)%2; A(0, 24/2/3), B(3,11J11/3)

@) x= 2y —1; A(1/2,58), B(,1)
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Chapter (6)

L'Hopital's Rule and Improper Integrals

This chapter is divided into two parts, the first part is concerned with different types of
indeterminate forms and their evaluation through a method known as L 'Hopital's rule and
the second part is concerned with improper integrals, their types, the convergence and
divergence features of them and how to evaluate such types of integrals in some cases.

6.1 Indeterminate Forms and L'Hopital's Rule

We shall consider here several indeterminate forms together with their evaluation.

6.1.1 The Indeterminate Forms % and 2.
o0

Let f(x)and g(x)be two functions which are continuous at x = a and either

f(a) =g(a =0 or lml f(x) = llma g(x)= t

Then the expression lim % for both cases cannot be evaluated directly since this leads to
x—a g(X

either % or i which are known as indeterminate forms.
o0

Theorem (6.1.1) “L'Hopital's Rule”
Let f(a) = g(a) =0.If f'(a) and g'(a) exist such that g'(a) = 0, then

f 10 @

=ag(x)  g'(a)

Proof
) - 1(@)
f(x) f(x)-"f(a) _ X —a
g(x) g -g@ 9 -9@)
X — a

If g'(a) = 0, then from the limit theorems it follows that:

o 0 _ f'@
x»a g(x)  g'(a)
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Remark : For the case f, L'Hopital's rule states that
o0

tim ) _ i 00
x—a g(x) x—a g'(x)

provided the last limit exists or is infinite. It must be noted that L'Hopital's rule can be applied

. . 0 .
several times as far as we still get the form 0 or 2 and the rule ceases to be applied when
Qo0

either the numerator or the denominator has a finite nonzero limit. Also, it must be noted that

the rule is applied if a is replaced by a*, a™, + «.

Example (1) Evaluate the following limits,

2
smx X=X 1 — cosx
M) I| (i) lim 5 (iii) lim —————-
x>0 x4 — 5 x? 4+ 2x x>0 X% 4+ X
1-2e* +e? .1 —2e*+e* . sintx
v)lim ———— (v) lim ——— (vi) lim .
x=>0 X + sin X x>0 X —sinXx x—0
Solution
sin X 0 sin X €os X
(|)Im—:(j Then, lim —— = lim = 1.
x—>0 X x->0 X x—0 1

2_
(i) lim X ZX = [gj Then,
x>0 x* — 5 x* 4+ 2X 0

X% — X ) 2x —1 1
lim 5 =|Im3—=——.
x>0 x* — 5 x? + 2X x>0 4x°—-10X + 2 2

(iii) lim 1 —cosx _ [%).Then, lim 1 -cosx _ lim —omX =(%)

x>0 x* 4 x2 x>0 x* 4 x2 x—>0 4x3 4+ 2x
] 1 — cosx . COS X 1
Hence we use the rule another time, lim —— = lim — =
x=>0 X% + X x>0 12X + 2 2
1 —2e*+ e** 0
(iv) lim ——— :(—j. Then,
x=>0 X +5SInX 0
1 —2e*+ e o —2e%4+2e* 0
im—— =lm—=—=0.
x>0 X 4+ SInX x=>0 1+ COS X 2
1-2e* +e* 0
(V)lim ————— =| — |. Then,
x>0 X —SIn X 0
1-2e* +e* —2e* +2e 0
Use the rule another time, lim —=lim————=| — |.
x>0 X —sinx x»0 1—cosX 0
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1 —2e*+e* o —2e 4+ 4e* 2
im—— "~ =|im——— =2 = o,
x>0 X —Sin X x—0 sin X 0
in- int 1/41 - x?
i) tim X (0} rhen, fim SINX _ g 2K g
x—0 X O x—0 X x—0 1

Example (2) Evaluate the following limits,

2

o X N (1 o o 2 tanx
(i) lim — @i) lim — @) fim ——
Xx—o @ x—o [y o 1 + secx
2
. ] 2X ] 2X _ X ] . _ X
(iv) lim < ) lim 2= (i) tim 5=
x—>» |n X x—0 X x—w 5 X
Solution
2 2
o X . X . 2X
(i) lim — = (EJ Then, lim — =lim — = (2]
X—>00 e o0 X—>00 e X—>00 e o0
} X2 2 2
Hence we use the rule another time, lim — =Ilim — = — = 0.
X—>00 e X—>0 e o0
oy 1. Inx 00 . Inx . 1/x . 1
i) im — =|—|. Then, Im — =lm —— =Ilim — =0
( ) X—>0 \/; [ooj X—>00 \/; X—>00 1/(2\/;) X—>00 2\/;
e 2 tan x . 2 tanx ) 2 sec? x
@iii) lim —— = (fj Then, lim —— = |lm ——
7 1+ secx 0 w7 1+ secx , 7~ secxtanx
2 2 2
. 25Secx . 2/cos X . 2
= lim = lim —— = lim — =2.
7 tanx 7 sinx/cosx ., = sinX
2 2 2
2Xx 2X 2x
. . . . 2e .
(iv) lim ¢ - (fj.Then, lim £ — Jim =lim 2xe** = .
x—>» |n X 00 x—>» |n X x—»o 1[X X—>00
203
(V) lim = (gj Then,
x—0 0
.28 =3 . 2%In2-3"In
lim 3 = lim 3 3:In2—ln3.
x—0 X x—0

wi) tim 223 i =303 _fIn3 e (3 2 (M3 ) 2 0
xo>o 55X xoo _5*|Inb In2 ) x»>={5 In2
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6.1.2 Other Indeterminate Forms

There are a number of indeterminate forms other than 9 or 2 suchas o — w0, Oxoo, 0°,
o0

©? and 1. These can be evaluated by transforming them to the form of a quotient and then

applying L'Hopital's rule. Each case will investigated separately as follows

1. Case of 0o —

This case results from lim [f(x) — g(x)] where lim f(x) =cand lim g(x) = . We treat

this by trying to transform it to one of the previous forms.

Example (3) Evaluate lim (1 - L]
x>0 X sinx

Solution

. 1 1 ] sin Xx—X . cosx —1
lim|=———| =Ilim - = lim| ——
x=>0{ X sinx x=0{ X sinx x=0 { X €OS X+Sin X

. —sinx 0
= lim - =—=0.
x=0 | — X SIn X+ 2Cc0S X 2

2. Case of Ox o0

This case results from lim f(x) g(x) where lim f(x) =0 and lim g(x) = 0. We treat this

case by writing f(x)g(x)as f(x) giving rise to 0 or as 9() giving rise to Sy
1/9(x) 0 1/ f(x) ©
Example (4) Evaluate
@) lim xInx (i) lim x cotx
x—0* x—0*

Solution
M lim xx = fim "= jim XX 2 im () =o.

x—0" x—0" 1/X x>0t —1/X x—0"
(i) lim x cotx = lim = lim —~ =1_1

x—0° x>0" tanx x>0 sec x 1

3. For other cases 0°, «° and 1”
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These cases results from lim f(x) * where Ilim f(x)=0orwoorl and
X—a X—a

lim g(x) = 0 or 0 or oo respectively.

We treat this by writing y= f(x) ®”and then taking logarithms we get:

Iny = g(x) Inf(x),then limIny = liLr;(g(x) Inf(x))=A

where A is constant and hence, limy = lim f(x)*® = e*
X—a X—a

Example (5) Evaluate lim x*

x—0"

Solution
Let y=x*, then Iny=xInx and

In x 1/x

limIny = lim xInx = lim — = lim = lim (-x)=0
x—0" x—0" x—0" 1/ X x—0" —1/x%> x>0

lim x* = lim y=¢e%=1

x—0" x—0*
Example (6) Evaluate lim x"*

x—0"

Solution
Let y=x*, then Iny=xInx and

. . . Inx ) 1/x .

lim Iny = lim xInx = lim — = lim > =1im (-x)=0
Xx—0" Xx—0% x—0" 1/ X x>0t —1/X X—0"

lim x*=¢e” =1

x—0*

Example (7) Evaluate lim (1+ E)

X—0 X

Solution

Let y= (1+§j , then Iny=x In[1+§j and lim Iny = lim x In(l +§j
X X

X—00 X—00 X

) 2

In (1 +3} (l +3j X
X X : 3 3

=lim ——~=Ilim —————— = lim Then limy=¢°

X—>0 1/ x X—>o0 _1/)(2 X—>® ( 3] ) X—>
1+—
X
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Exercises (6.1)

Evaluate the following limits,

A lim tan 2x

an

X —sin x

(4) lim 3

—4x +3
Nlim ———
()X—)OX —2x -3

1 - cosx
2

(10) lim
x>0 X + X

sin‘13x
13) lim
13) it sin* x

sin X
2

(16) lim

x—=0 ¥

. Insi
19). lim —°nX
x—0" [nsin 3x

Xsin X
22) lim —————
( )H01 COS X

(25) lim (1— Ej X
X— 0 X

(28) Iin(l(ln Xx—Insinx) (29) lim

(31) lim

x—>0"

1 1
e -1 x

(34) !igl(sinh X —X)

10x +1

JX+1

(37) lim

X—>00

(40) lim (x + cos2x)™> (41) lim (1 + 3x)™

x—0*

(43) lim (1+ 2x)°"

x—0"

(46) )!m (X)lllnx

(35) lim (1- 3x)1*

(38) lim

(44) lim (e* + xJ"”

x=>1 In X — sin zx

X -1

(39)

3 - 27 5 — 32
2) lim 3) lim
@ lm = =5 @ fim =
\/E J—
(5) lim X 1 (6)| — sinXx
Xx—1 X—l
cosx — 1 COs X
8) lim ——~ 9) lim
()x—>0 e -Xx -1 () <>l 2 2X_7Z-
N -1
1) lim 0 tf_in X 12) lim (3x+1_ _1 j
R X sinXx x>0 X  sinx
1+ x -1 ax
(14) lim @s) lim X218
ZeX —3x—e sin x*
@n). X_)g > (18)1_)0 b
i 3/2 B
(20) lim ==X (g jjm X X4
x>2 1 + cos2x X0 % In x
) lim| = -1 (2a) tim (@)
x=>01{ sINn X X Xx—>zl2 (X _ 72./2)
(26) lim (In2x—In(1+x)) (27) lim x®™
x—0" x—0"
=D gy fim X2
—0* (X _ 2)2 x>0 2 _
32) lim (1 + 2x 1/2Inx (33) lim et =2
( 0
X—>00 X X

(36) lim x* 27

lim tanx Insinx
x—(712)”

(42) lim [1+ ﬁjx
X—>0 X

(45) lim (sinh x — x)

X—>00

(47) Iin; (cot2 X —csc? x) (48) "rrll (x)1/0
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6.2 Improper Integrals

b
The definite integral jf(x) dx has a finite value when a and b are finite on [a, b]. Such

a
integral are said to be proper, but if either a or b is infinite or f(x) is infinite on [a, b], the
resulting integrals are said to be improper. The treatment of improper integrals is carried
through limiting processes. If the limit exists, the improper integral is said to

be convergent and the limit is the value of the improper integral. If the limit does not exist, the
improper integral is said to be divergent. Two types of improper integrals can appear, the first
type are integrals with infinite limits of integration and the second type are integrals with

infinite integrands.

6.2.1 Improper Integrals of The First Type

The improper integrals of the first type appears in either one of the following forms:

b
1. j f(x) dx , where f(x) is continuous on (-0, b].

—00

The treatment of this integral is carried through the following limiting process:

2. If(x) dx , where f(x) iscontinuouson [a, ).

The treatment of this integral is carried through the following limiting process:

3. jf(x) dx , where f(x) is continuouson (—oo, ).

—0

The treatment of this integral is carried through the following limiting process:

o0

[foodx = rILr[]wa(x) dx

*© oo N
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If the integral does not exists, but lim J' f (x) dx exists, we say that the principal value of

r—oo

the integral exists.

Example (1)

Determine whether the following improper integrals converge or diverge
-1 1 0

: dx . dx .

I — i i sinh x dx

()_[OXZ ”!uxz ()L

Solution

-1 a1 )
0] % % (2] - mfaet)

r

Therefore the integral converges and is equal to 1 (see Fig. (6.1)).

Fig. (6.1)

(i) J. a__ lim _[ ax__ lim (tan‘l x)(r,: limtan®r =2~  Therefore the integral
5 1+ X2 r—o 01_|_ X2 r—>o r—o 2

converges and is equal to z/2 (see Fig. (6.2)).

1

Fig. (6.2).
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r—>ow r—>ow r—o

(iii) _[sinh xdx = lim [sinhxdx = lim (coshx); = lim (cosht — coshr)
—0 t

t—>- t—>-— t—>-o
The limit does not exits and therefore the integral diverges (see Y
Fig. (6.3)). Therefore, the principal value of the integral exists.

This means that when approaching —oo and oo in different

arbitrary manners, the integral diverges but when the
approaches are in qual manners. the principal value of the

integral converges.

Fig. (6.3).

Theorem (6.2.1) (Domination Comparison Test)

Let f (x)and g(x) be continuous and let 0 < f(x) < g(x) forall x €[a, «). Then

If I g(x) dx converges, _[ f (x) dx also converges.

a a

If If(x) dx diverges, Ig(x) dx also diverges.

Example (2)
Show that I e dx converges
1

Solution

ltisclearthat 0<e™ < e™ V x e[l ) and,

r

Tex dx=lim [e™ dx=lim (- e ) =lim (e +e*)=
1

r—o 1 r—o r—o

oD |-

This means that I e dx converges, and therefore I e™ dx converges
1 1

Example (3)

1

Showthatj +2X dx diverges
X
1
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Solution

J‘l—i-X J- 1 X+J.1 dx
1 1 X 1 X
Since + % > = v x e[t o) and,

X X
Tl jl dx = lim(Inx); = lim(Inr — In1) = oo (diverges)
1 X 1X t—o t—o0 .
Then 1+ X

1

Theorem (6.2.2) (Limit Comparison Test)

Let f (x) and g(x) be positive functions. If lim )

=L, O<L<ow,then
X—>00 g(x)

[ f(x) dx and fg(x) dx_both converge or diverge.

Example (4)
2
Show that I dx converges
1+ x*
Solution
Compare X" with !
1+ x* 1+ x%
X2
4 2 2
Science lim 1+x = lim LJri() =1, therefore
X— 0 1 X—>00 (1+ X )
1+ x?
© 2
j dx converges as _[ dx is convergent.
o 1+ x* 1+ x?
Example (5)
Show that I 1+2x° dx diverges

1 1+ x°
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Solution

5
Compare 1+ ZXG with 1
1+ x X
5 6 5
Science lim (L+2x7) L+ X ):Iim X(1+—2;():2 , therefore
X 1/x x> 14 X
[e¢) 5 [e¢]
I1+ 2X6 dx diverges as Il dx
1 1+X 1 X

6.2.2 Improper Integrals of The Second Type

The improper integrals of the second type appears in either one of the following forms:
b
1. If(x) dx , where f(x) iscontinuouson (a, b] and is infinite at a.

The treatment of this integral is carried through the following limiting process:

if(x) dx = Jm j.f(x) dx

ate

b
2. [f(x) dx, where f(x) is continuous on [a, b) and is infinite at b

The treatment of this integral is carried through the following limiting process:

b b—&
jf(x)dx = lim jf(x)dx
0"

b
3. If(x) dx , where f(x) iscontinuouson [a, b] exceptat c e(a, b) and it is infinite at c.

The treatment of this integral is carried through the following limiting process:

b

_[ f(x) dx = j f(x) dx + jl f(x)dx = Iingf_flf (x)dx + Iirrclr _Tf(x) dx

a

C+ép

If anyone of the limits does not exists, the integral diverges.
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C—¢

However. If lim If(x) dx + If(x) dx | exists, we say that the principal value of the

& —0"
C+s

integral converges.
This means that approaching the point x = ¢ from the right and the limit by different manners

may lead to different results.

Example (6)

Evaluate _[

\/XT

Solution

dx_Ilm (2\/—)+ = lim 2(\/_ \/_):

0" £—0"

P C— 1
a
o™
{
o
2
v
[}

Therefore, the integral converges and is equal to 4.

Example (7)
¢l
Discuss whether the improper integral I— dx converges or diverges

Solution

l-¢

dx= lim [ —— dx = lim (-In(@-x));* = lim (In1- Ing) =

— X &—>0" 0 1—-X e—>0" e—>0"

O ey
[
[

Since the limit does not exist, then the improper integral diverges.
Example (8)

1
Discuss whether the improper integral _[ 1 dx converges or diverges
7 X

Solution
cdx  Sdx o odx o fdx .t odx
—:I—+I—= lim =4+ lim | =
a X 4 X 0 X &—0" a X £ —0" % X
= fim (In|x)+ fim (
&g —0" &, —>0"
= lim (Ing,)+ lim (~Ing,) =—o0 + o0
&g —0" &, —>0"
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Since both limits do not exist, therefore the Improper integral diverges.

However:
. fdx tdx
i 5 IS = (i) (mpd) -

Therefore, the principal value of the improper integral converges.

Remark (1)

It must be noted that the domination comparison test can be applied also for the second type
as follows.

Let f(x)and g(x) be continuous and let 0 < f(x) < g(x) for every x €[a, b]. If f(x)and

g(x) areinfinite at x = a, then

b b
LIf [g(x) dx converges, [ f(x) dx also converges.

b b
2. If If(x) dx diverges, Ig(x) dx also diverges.

Example (9)

cosh .
Determine whether the improper integral I 3 dx converges or diverges
Solution
Since cosh x > ! Vv xe[0, 3] and,

(x-3° (x-3)°

3 3-¢ 3-¢
I 1 dx=lim j 1 - dx = |im+(__1J = Iim(_—l—lj—oo
O(X_3) e >0 < (X—3) e >0 X—3 e-0l—g 3

3
dx diverges and so the integral I cosh x

: (x = 3)?

dx diverges.

3
Hence the integral [ !
X J—

0
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Remark (2)
It is possible to face improper integrals which combine the two types. In this case the
analysis which was performed separately for each type will be combined together as will be

seen from the following examples:

Example (10)

o0

. . . dx .
Determine whether the improper integral J' T converges or diverges
X
0

Solution

J‘jé :SI;W j% _SILT (2\/_) = Ilm (2\/F—2\/_)

r—ow r—oo r—o

Therefore, the improper integral diverges.

Example (11)

If p > 1, show that the improper integral I converges or diverges

(In X)°?
Solution
lx(Inx)p e-0" 4 x(Inx)" o0 -p+1 ).
- I|m— (Inr)? —(In@+e)) "]

e—>0"] —
r—o

Since p > 1, both terms tend to zero and hence the improper integral converges.
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Exercises (6.2)

Determine whether each of the following improper integral

converge or diverge. For those which converge, find their values whenever possible.

I dx
19)

! x? — 4

¢ dx
22 —
(22) j 7

2 dx
(25) j -

0 9—-x

© e dx
(28) [ —5

0

7 dx
@) | ——

'[2 X A/ X% —1

rl4

secx dx

@8 [ =

@7 I e cosx dx
0

dx

x® —

20) |

7

(23) j sin® x cos x dx
0

dx
4 — x?

@) |

:

wl2

(29) I tan x dx
0

2
(32) .[ X—lzcos% dx

-1

1
(35) 'f x" Inx dx
0

145

x dx
1+ x2

@ |

2 dx
x? -1

© [

9) j. e’ dx

T 2xdx
12 _J;;(l+ x"‘)2

(24) _1[ x" dx

1
(27) | xInx dx
0
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